Skip to main content

New Developments and Perspectives

  • Chapter
Practice of Intramedullary Locked Nails

Throughout history man has needed to repair broken, nonfunctional bones. As knowledge and technical skills on fracture healing increased, several noninvasive and surgical techniques were designed to support the natural process of self-repair. Rational conservative treatment was developed in the nineteenth century and surgical treatment of fractures, i.e., open reduction and fixation, has been used since World War II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar and sacral spine. Spine 25:606–614

    Article  PubMed  CAS  Google Scholar 

  2. Bostman O, Hirvensalo E, Vanionpaa S et al (1987) Biodegradabe internal fixation for malleolar fractures. Br Edit Soc Bone J Surg 69B

    Google Scholar 

  3. Christel PS, Vert M, Chabot F et al (1984) Polylactic acid for intra-medullary plugging. Biomaterials and Biomechanics 1983. Elseviers Science, Amsterdam

    Google Scholar 

  4. Court-Brown CM, McQueen MM, Quaba AA, Christie J (1991) Locked intramedullary nailing of open tibial fractures. J Bone Joint Surg 73B:959–964

    Google Scholar 

  5. Daniels AU, Chang MKO, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomat 1:57–58

    Article  CAS  Google Scholar 

  6. de Bastiani G, Aldegheri R, Renzi Brivio L (1984) The treatment of fractures with a dynamic axial fixator. J Bone Joint Surg 66B:538–545

    Google Scholar 

  7. Dijkema ARA, van der Eist M, Breederveld RS, Verspui G, Patka P, Haarman HJThM (1993) The surgical treatment of fracture dislocations of joint with biodegradable implants. J Trauma 34:82–85

    Article  PubMed  CAS  Google Scholar 

  8. Eitenmuller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbaren Polymere als temporare Implantate. Chirurg 58:831–39

    PubMed  CAS  Google Scholar 

  9. Gabler C, Tschegg EK, Greitbauer M, Stanzl-Tschegg S, Wozasek GE, Laube W, Vécsel V (1999) Ermüdungsfestigkeit von Verriegelungsbolzen für die unaufgebohrte Tibianagelung. Unfallchirurg 102:29–34

    Article  PubMed  CAS  Google Scholar 

  10. Goessens MLMJ, Van den Wildenberg FJAM, Eggink GJ, Stapert JWJL (1996) The telescopic locking nail for humerus. Implant design preliminary clinical results. Osteo Int 4:270–274

    Google Scholar 

  11. Goessens MLMJ, Van den Wildenberg FAJM, Eggink GJ, Stapert JWJL (1999) Treatment of fractures of femur and tibia with the telescopic locking nail: design of a new implant and the first clinical results. J Trauma Injury Infect Clin Care 46:853–862

    Article  CAS  Google Scholar 

  12. Grundnes O, Reikeras O (1991) Mechanical effects of function on bone healing — nonweight bearing and exercise in osteotomized rats. Acta Orthop Scand 62:163–165

    Article  PubMed  CAS  Google Scholar 

  13. Heitemeyer U, Claes L, Hierholzer G (1990) Die Bedeutung der postoperative Stabilität für die ossäre Reparation einer Mehrfragmentfraktur. Tierexperimentele Untersuchungen. Unfallchirurg 3:49–55

    Google Scholar 

  14. Hofstetter R, Slomczykowski M, Sati M, Nolte LP (1999) Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 4:65–76

    Article  PubMed  CAS  Google Scholar 

  15. Hofstetter R, Slomczykowski MA, Krettek C, Koeppen G, Sati M, Nolte LP (2000) Computer-assisted fluoro-scopy-based reduction of femoral fractures and antetorsion correction. Comput Aided Surg 5:311–325

    Article  PubMed  CAS  Google Scholar 

  16. Hollinger JO, Schmitz JP (1987) Restoration of bone discontinuities in dogs using a biodegradable implant. J Oral Maxillofacial Surg 45:594–600

    Article  CAS  Google Scholar 

  17. Inhofe DP (1992) Biomechnical considerations in intramedullary fixation of lower-extremity fracture. Orthop Rev 21:945–952

    PubMed  CAS  Google Scholar 

  18. Kempf I, Grosse A, Taglang G, Bernhard L, Moui Y (1991) L’encoulage centromédullaire avec verrouillage des fractures récentes du femur et du tibia. Chirurgie 117:478–487

    PubMed  CAS  Google Scholar 

  19. Kessler SB, Hallfeldt KKJ, Perren SM, Schweiberer L (1986) The effects of reaming and intramedullary nailing on fracture healing. Clin Orthop 212:18–25

    PubMed  Google Scholar 

  20. Klemm KW, Börner M (1986) Interlocking nailing of complex fractures of the femur and tibia. Clin Orthop 212:89–100

    PubMed  Google Scholar 

  21. Krettek C, Hofstetter R, Koeppen G (2000) Computer assistance for antetorsion angle correction during femoral fracture reduction. Abstract of the 5th international symposium on computer assisted orthopaedic surgery (CAOS), Davos, p 38

    Google Scholar 

  22. Kulkarni RK, Moore EG, Hegyeli AF, Lenonard F (1971) Biodegradable Poly (lactic acid) polymers. J Biomed Mater Res 5:169–181

    Article  PubMed  CAS  Google Scholar 

  23. Kuner EH, Seif El-Nasr M, Münst P, Staiger M (1993) Die Tibiamarknagelung ohne Aufbohrung. Unfallchirurgie 19:278–283

    Article  PubMed  CAS  Google Scholar 

  24. KĂĽntscher G (1940) Die Marknagelung von KnochenbrĂĽchen. Langenbecks Arch Klin Chir 200:443

    Google Scholar 

  25. Laine T, Schlenzka D, Mäkitalo K, Tallroth K, Nolte LP, Visarius H (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. Spine 22:1254–1258

    Article  PubMed  CAS  Google Scholar 

  26. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomized controlled clinical study in 100 consecutive patients. Eur Spine J 9 [Suppl l]:35–40

    Google Scholar 

  27. Lavallee S, Sautot P, Troccaz J et al (1994) Computer assisted spine surgery: A technique for accurate transpe-dicular screw fixation using CT data and a 3-D optical localizer. Proc 1st Int Symp Med Robot Comput Assist Surg (MRCAS) 323–328

    Google Scholar 

  28. Lhowe DW, Hanen ST (1988) Immediate nailing of open fractures of the femoral shaft. J Bone Joint Surg 70A:812–820

    Google Scholar 

  29. Maatz R et al (1986) Intramedullary nailing and other intramedullary osteosyntheses. Saunders, Philadelphia

    Google Scholar 

  30. Matsusue Y, Yamamuro T, Yoschii S, Oka M et al (1991) Biodegradable Screw Fixation of Rabbit Tibia Proximal Osteostomies. J Appl Biomat 2:1–12

    Article  CAS  Google Scholar 

  31. Nolte LP, Slomczykowski MA, Berlemann U, Strauss MJ, Hofstetter R, Schlenzka D, Laine T, Lund T (2000) A new approach to spine surgery: fluoroscopy-based surgical navigation. Eur Spine J 9 [Suppl 1]:78–88

    Article  Google Scholar 

  32. Otto TE, Patka P, Haarman HJThM, Klein CPAT, de Vries R (1994) Intramedullary bone formation after polylactic acid wire implantation. J Mater Sci Mater Med 5:407–411

    Article  CAS  Google Scholar 

  33. Pennig D (1990) Zur Biologie des Knochens und der Knochenbruchhheilung. Unfallchirurg 93:488–491

    PubMed  CAS  Google Scholar 

  34. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to interal fixation. Clin Orthop Relat Res 138

    Google Scholar 

  35. Rokkanen P, Bostman O, Vanionpaa S et al (1985) Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet 1422–1424

    Google Scholar 

  36. Sarmiento A (1972) Functional bracing of tibial and femoral shaft fractures. Clin Orthopaedics 82:2–13

    CAS  Google Scholar 

  37. Schuster J (1972) Die Meetallose. Chirurg 43:114–116

    PubMed  CAS  Google Scholar 

  38. Schwarzenbach O, Berlemann U, Jost B et al (1997) Accuracy of computer-assisted pedicle screw placement. An in vivo computed tomography analysis. Spine 22: 452–458

    Article  PubMed  CAS  Google Scholar 

  39. Springer MA, Binsbergen EA van, Patka P, Bakker FC, Haarman HJThM (1998) Resorbierbare Stäbe und Schrauben zur Fixierung von Knöchenfracturen; eine randomisierte klinische Prospectivstudie. Unfallchirurg 5:377–381

    Article  Google Scholar 

  40. Suhm N, Sati M, Jacob LA, Nolte LP, Regazzoni P, Messmer P (2000) Computer assisted nailing osteosynthesis of long bone fractures. Abstract of the 5th international symposium on computer assisted orthopaedic surgery (CAOS) Davos, p 38

    Google Scholar 

  41. Tonino AJ, Davidson CL, Klopper PJ, Lindau LA (1976) Protection from stress in bone and its effects. J Bone Joint Surg 58B

    Google Scholar 

  42. Tormala P, Vasenius J, Vaniopaa S et al (1991) Ultrahigh-strength absorbable self reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures. J Biomed Mater Res 25:1–21

    Article  PubMed  CAS  Google Scholar 

  43. Stapert J, Wolters JW (1992) Howmedica GmbH design support. Telescopic locking nail tests. Prüfbericht 91-030:1–15

    Google Scholar 

  44. van der Eist M, Dijkema ARA, Klein CPAT, Patka P, Haarman HJThM (1995) Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation. An animal study. Biomaterials 16:103–106

    Article  Google Scholar 

  45. van der Eist M, Kuiper I, Klein CPAT, Patka P, Haarman HJThM (1996) The burstphenomenon, an animal model simulating the long-term tissue response on PLLA interlocking nails. J Biomed Mater Res 30:139–143

    Article  Google Scholar 

  46. van der Eist M, Patka P, van der Werken C (2000) Resorbierbare Implantate für Frakturfixierungen. Aktueller Stand. Unfallchirurg 103:178–82

    Article  Google Scholar 

  47. Visarius H, Berlemann U, Schwarzenbach O (1999) Concept and clinical aspects of computer assisted spine surgery. In: Nolte LP, Ganz R (eds) CAOS — Computer Assisted Orthopaedic Surgery. Hogrefe and Huber, Bern, pp 81–88

    Google Scholar 

  48. Whittle AP, Rüssel TA, Taylor JC, Lavelle DG (1992) Treatment of open fractures of the tibial shaft with the use of interlocking nailing without reaming. J Bone Joint Surg 74A: 1162–1171

    Google Scholar 

  49. Winquist RA, Hansen TT, Clawson DK (1984) Closed intramedullary nailing of femoral fractures. J Bone Joint Surg 66A:529–539

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakker, F.C. et al. (2002). New Developments and Perspectives. In: Kempf, I., Leung, K.S., Grosse, A., Haarman, H.J.T.M., Seidel, H., Taglang, G. (eds) Practice of Intramedullary Locked Nails. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56337-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56337-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62962-4

  • Online ISBN: 978-3-642-56337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics