Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 154))

Abstract

The southern polar region belongs to the earth's coldest climate region, primarily because of its high average altitude and high latitude. The amount of solar radiation received varies greatly on a seasonal basis and thus poses special and severe conditions to plants and soil organisms which have to find, keep, and when possible extend their niches (Kennedy 1999). Ice-free areas of the Antarctic continent and its adjacent islands are covered primarily by cryptogamic communities (Olech, Chap. 12; Seppelt, Chap. 13; Kanda et al., Chap. 14) and only the mildest places in the maritime Antarctic show the establishment of vascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander V (1975) Nitrogen fixation by blue-green algae in polar and sub-polar regions. In: Steward WPD (ed) Nitrogen fixation by free-living micro-organisms. IBP No 6. Academic Press, New York, pp 175–188

    Google Scholar 

  • Benedict JB (1990) Lichen mortality due to late-lying snow: results of a transplant study. Arct Alp Res 22:81–89

    Article  Google Scholar 

  • Benedict JB (1991) Experiments on lichen growth. II. Effects of a seasonal snow cover. Arct Alp Res 23:189–199

    Article  Google Scholar 

  • Beyer L, Bölter M (1999) Formation, ecology and geography of cryosols of an ice-free oasis in coastal East Antarctica near Casey Station (Wilkes Land). Aust J Soil Res 37:209–244

    Article  Google Scholar 

  • Beyer L, Tielbörger K, Blume H-P, Pingpank K, Podlech D (1998a) Geo-ecological soil features and the vegetation pattern in an arid dune area in the Northern Negev, Israel. Z Pflanzenernähr Bodenkd 161:347–356

    Article  CAS  Google Scholar 

  • Beyer L, Pingpank K, Bölter M, Seppelt R (1998b) Small-distance variation of carbon and nitrogen storage in mineral Antarctic Cryosols near Casey Station. Z Pflanzenernähr Bodenkd 161:211–220

    Article  Google Scholar 

  • Beyer L, Bockheim JG, Campbell IB, Claridge GGC (1999) Genesis, properties and sensitivity of Antarctic Gelisols. Antarct Sci 11:387–398

    Article  Google Scholar 

  • Beyer L, Pingpank K, Wriedt G, Bölter M (2000a) Soil formation in coastal continental Antarctica. Geoderma 95:283–304

    Article  Google Scholar 

  • Beyer L, Bölter M (2000b) Chemical and biological properties, formation and classification of spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119

    Article  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000c) Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Island region of East Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Beyer L, White DW, Bölter M (2001) Organic matter composition, transformation, and translocation in Haplocryods (Podzols) of an ice-free terrestrial oasis in East Antarctica. Austr J Soil Res 39:543–563

    Article  CAS  Google Scholar 

  • Blume H-P, Bölter M (1993) Soils of Casey Station (Wilkes Land, Antarctica). In: Gilichinski D (ed) Joint Russian-American seminar on cryopedology and global change. Post-Sem Proc 1st Int Conf Cryopedology 1992, Russian Academy of Sciences, Pushchino, pp 96–103

    Google Scholar 

  • Blume H-P, Bölter M (1996) Wechselwirkungen zwischen Boden-und Vegetationsentwicklung in der Kontinentalen Antarktis. Verh Ges Ă–kol 25:25–34

    Google Scholar 

  • Blume H-P, Schneider D, Bölter M (1996) Organic matter accumulation in and podzolisation of Antarctic soils. Z Pflanzenernähr Bodenkd 159:411–412

    Article  CAS  Google Scholar 

  • Blume H-P, Beyer L, Bölter M, Erlenkeuser H, Kalk E, Kneesch S, Pfisterer U, Schneider D (1997) Pedogenic zonation in soils of southern circumpolar region. Adv GeoEcol 30:69–90

    CAS  Google Scholar 

  • Blume H-P, Beyer L, Schneider D (1998) Soils of the Southern circumpolar region and their classification. Euras Soil Sci 31:477–485

    Google Scholar 

  • Bockheim J G (1997) Properties and classification of cold desert soil from Antarctica. Soil Sci Soc Am J 61:224–231

    Article  CAS  Google Scholar 

  • Bockheim J G, Ugolini F C (1990) A review of pedogenic zonation in well-drained soils of the Southern circumpolar region. Quat Res 34:47–66

    Article  Google Scholar 

  • Bölter M (1990) Microbial ecology of soils from Wilkes Land, Antarctica: II. Patterns of microbial activity and related organic and inorganic matter. Proc NIPR Symp Polar Biol 3:120–132

    Google Scholar 

  • Bölter M (1992) Vergleichende Untersuchungen zur mikrobiellen Aktivität in Böden und an Kryptogamen aus der kontinentalen und maritimen Antarktis (Casey, Wilkes Land, und Arctowski, King George Island). Habilschrift, Univ Kiel, pp 1–203

    Google Scholar 

  • Bölter M, Kappen L, Meyer M (1989) The influence of microclimate conditions on potential photosynthesis of Usnea sphacelata: a model. Ecol Res 4:297–307

    Article  Google Scholar 

  • Bölter M, Blume H-P, Kappen L (1995) Bodenbiologische Untersuchungen in der maritimen und kontinentalen Antarktis (King George Island und Windmill Islands). 1. Umweltparameter und anorganische Nährstoffe. Polarforschung 65:41–61

    Google Scholar 

  • Bölter M, Seppelt R, Beyer L, Pingpank C (2000) Studies on floristic diversity, soil organic matter, and soil microbes from the Windmill Islands, East Antarctica. Bibl Lichenol 75:421–432

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam

    Google Scholar 

  • Collins NJ, Callaghan TV (1980) Predicted patterns of photosynthetic production in maritime Antarctic mosses. Ann Bot 45:601–620

    Google Scholar 

  • Crawford RMM (1997) Habitat fragility as an aid to long-term survival in Arctic vegetation. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. Blackwell, Oxford, pp 113–136

    Google Scholar 

  • Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388

    Article  Google Scholar 

  • Davis RC, Harrison PM (1981) Prediction of photosynthesis in maritime Antarctic mosses. Coll Ecosyst Subantarct, Comit Ă© National Français des Recherches Antarctique 51:241–247

    Google Scholar 

  • Egner H, Riehm H, Domingo WR (1960) Untersuchungen ĂĽber die chemische Bodenanalyse als Grundlage fĂĽr die Beurteilung des Nährstoffzustandes des Bodens: II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. Koenigl Lant Ann 26:204–209

    Google Scholar 

  • Evenari M (1985) Adaptations of plants and animals to the desert environment. In: Evenari M, Noy-Meir J, Goodall D (eds) Ecosystems of the world 12A. Hot deserts and arid shrublands. Elsevier, Amsterdam, pp 79–93

    Google Scholar 

  • Hancock RJ, Seppelt RD (1988) Habitat specificity and morphological variation in two Antarctic Usnea species. Polarforschung 58:285–291

    Google Scholar 

  • Harwood JE, van Steenderen RE, KĂĽhn AL (1969) A rapid method for orthophosphate analysis at high concentrations in water. Water Res 3:417–423

    Article  CAS  Google Scholar 

  • Hovenden MJ, Seppelt RD (1995a) Uptake of water from the atmosphere by lichens in continental Antarctica. Symbiosis 18:111–118

    Google Scholar 

  • Hovenden MJ, Seppelt RD (1995b) Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenologist 27:505–516

    Google Scholar 

  • ISSS-WRB [International Soil Science Society — World Reference Base for Soil Resources] (1998) World Reference base for soil resources. World Soil Resources Reports 84, ISSS-ISRIC-FAO, Rome

    Google Scholar 

  • Jones JB (1991) Kjeldahl method for nitrogen determination. Micro-Macro Publishing, Athens

    Google Scholar 

  • Kappen L (1985) Vegetation and ecology of ice-free areas of northern Victoria Land, Antarctica. 2. Ecological conditions in typical microhabitats of lichens in Birthday Ridge. Polar Biol 4:227–236

    Google Scholar 

  • Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss Inc, New York, pp 433–491

    Google Scholar 

  • Kappen L, Meyer M, Bölter M (1990) Ecological and physiological investigations in continental Antarctic cryptogams. 1. Vegetation pattern and its relation to snow cover on a hill near Casey Station, Wilkes Land. Flora 184:209–220

    Google Scholar 

  • Kappen L, Breuer M (1991) Ecological and physiological investigations in continental Antarctic cryptogams. II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarct Sci 3:273–278

    Google Scholar 

  • Kappen L, Sommerkorn M, Schroeter B (1995) Carbon acquisition and water relations of lichens in polar regions — potentials and limitations. Lichenologist 27:531–545

    Google Scholar 

  • Kappen L, Schroeter B, Green TGA, Seppelt RD (1998) Microclimate conditions, melt water moistening and the distributional pattern of Buellia frigida on rocks in a southern continental Antarctic habitat. Polar Biol 19:101–106

    Article  Google Scholar 

  • Komárková V (1985) Two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arct Alp Res 17:401–417

    Article  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kennedy AD (1999) Modelling the determinants of species distributions in Antarctica. Arct Antarct Alp Res 31:230–241

    Article  Google Scholar 

  • Kuhn D (1997) Genese, Ă–kologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der King George Insel, West-Antarktis. Schriftenr Inst Bodenkd Univ Kiel 40:1–173

    Google Scholar 

  • Lewis Smith, RI (1985): Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 138–155

    Google Scholar 

  • Lewis Smith, RI (1986) Report on Antarctic fieldwork. plant ecological studies in the fellfield ecosystem near Casey Station, Australian Antarctic Territory 1985-86. Br Antarct Surv Bull 72:81–91

    Google Scholar 

  • Lewis Smith, RI (1990) Plant community dynamics in Wilkes Land, Antarctica. Proc NIPR Symp Polar Biol 3:229–244

    Google Scholar 

  • Lindsay DC (1978) The role of lichens in Antarctic ecosystems. Bryologist 81:268–276

    Article  Google Scholar 

  • Longton RE (1988) The biology of poplar bryophytes and lichens. Cambride University Press, Cambridge

    Book  Google Scholar 

  • Louis H, Fischer K (1979) Allgemeine Geomorphologie. Walter de Gruyter, Berlin

    Google Scholar 

  • Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:399–404

    Article  Google Scholar 

  • Ping C-L, Michaelson CJ, Malcom RL (1995) Fractionation and carbon balance of soil organic matter in selected cryic soils in Alaska. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. Lewis, Boca Raton, pp 307–316

    Google Scholar 

  • Quass W, Beyer L, Schneider D, Blume, H-P (1998) Podzolisation and soil organic matter transfer in soils of Antarctica. Proc 16th ISSS Congr, Montpellier. Electronic CD version, ISSS, Vienna

    Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Schachtschabel P (1951) Die Methoden zur Bestimmung des Kalkbedarfes. Z Pflanzenernähr Bodenkd 54:134–145

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (1998): Lehrbuch der Bodenkunde. 4th edn, Enke, Stuttgart

    Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum. 2. Aufl. Blackwell, Berlin

    Google Scholar 

  • Schroeter B, Kappen L, Schulz F (1997) Hydration-related spatial and temporal variation of photosynthetic activity in Antarctic lichens. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, Cambridge, pp 221–225

    Google Scholar 

  • Schroeter B, Kappen L, Schulz F, Sancho LG (2000) Seasonal variation in the carbon balance of lichens in the maritime Antarctic: long-term measurements of photosynthetic activity in Usnea aurantiaco-atra. In: Howard-Williams C, Davison W, Broady P (eds) VII SCAR Intern Biol Symp Antarctic Ecosystems: Models for a wider ecological unerstanding. Caxton Press, Christchurch

    Google Scholar 

  • Soil Survey Staff (1998): Keys to soil taxonomy. 8th edn. US Depart Agric — Nat Res Counc, Washington, DC

    Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  • Willkomm H, Bölter M, Kappen L (1991) Age estimation of Antarctic macrolichens by radiocarbon measurements. Polarforschung 61:103–112

    Google Scholar 

  • Winkler B (2000) Die Rolle der Schneebedeckung fĂĽr die Kryptogamenvegetation in der maritimen Antarktis. Dissertation, Univ Kiel, 140pp

    Google Scholar 

  • Winkler B, Kappen L, Schulz F (2000) Snow and ice as an important ecological factor for the cryptogamy in the Maritime Antarctic. In: Howard-Williams C, Davison W (eds) Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, pp 220–224

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyer, L., Blume, HP., Bölter, M., Kappen, L., Kuhn, D., Seppelt, R.D. (2002). Soil Ecology in Relation to Plant Patterns. In: Beyer, L., Bölter, M. (eds) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56318-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62674-6

  • Online ISBN: 978-3-642-56318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics