Skip to main content

Plants and Lichens in the Antarctic, Their Way of Life and Their Relevance to Soil Formation

  • Chapter
Book cover Geoecology of Antarctic Ice-Free Coastal Landscapes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 154))

Abstract

In classical terms, soil is a product of rock weathering and influences of soil organisms, dead and transformed organic substances, water and air (Scheffer and Schachtschabel 1984). In other words, textbooks define the pedosphere to be the part of the earth's crust in which the lithosphere is altered by atmospheric forces and organisms. These definitions underline the importance of biota in and on the soil. Campbell and Claridge (1987) therefore discuss the question of whether there are real soils in most of Antarctica because of the virtual absence of an effective soil biological component. They therefore conclude that a broader rather than a narrower approach to the definition of soils in Antarctica is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson H, Wilson M, Selkirk P, Seppelt RD (1988) Photoinhibition in Antarctic mosses. Polarforschung 58:103–112

    Google Scholar 

  • Alexander V, Billington M, Schell DM (1978) Nitrogen fixation in Arctic and alpine tundra, In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan Arctic tundra. Springer, Berlin Heidelberg NewYork,pp 539–558

    Chapter  Google Scholar 

  • Allen SE, Grimshaw HM, Holdgate MW (1967) Factors affecting the availability of plant nutrients on an Antarctic island. J Ecol 55:381–396

    Article  Google Scholar 

  • Allen SE, Northover MJ (1967) Soil types and nutrients on Signy Island. In: (JE Smith, organizer) A discussion on the Antarctic terrestrial ecosystem. Philos Trans R Soc B252,179–185

    Google Scholar 

  • Ascaso C, Sancho LG, Rodriguez-Pascual C (1990) The weathering action of saxicolous lichens in maritime Antarctica. Polar Biol 11:33–39

    Article  Google Scholar 

  • Ascaso C (2000) Lichens on rock substrates: observation of the biomineralization proceses. In: Schroeter B, Schlensog M, Green TGA (eds) New aspects in cryptogamic research. Contributions in Honour of Ludger Kappen. Bibliotheca Lichenologica 75. J Cramer in der Gebr. Bornträger Verlagsbuchhandlung, Berlin, pp 127–135

    Google Scholar 

  • Bacci EB, Calamari D, Gaggi C, Fanelli R, Focardi S, Morosini M (1986) Chlorinated hydrocarbons in lichens and moss samples from the Antarctic Peninsula. Chemosph 15:747–754

    Article  CAS  Google Scholar 

  • Baker JH (1972) The rate of production and decomposition of Chorisodontium aciphyllum (Hook. f. & Wils.) Broth. Br Antarct Surv Bull 27:123–129

    Google Scholar 

  • Banergee RD, Sen SP (1979) Antibiotic activity of bryophytes. Bryologist 82:141–153

    Article  Google Scholar 

  • Bargagli R, Broady PA, Walton DWH (1996) Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarct Sci 8:121–126

    Article  Google Scholar 

  • Bargagli R, Sanchez-Hernandez JC, Martella L, Monsaci F (1998) Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biol 19:316–322

    Article  Google Scholar 

  • Beckett RP, Brown RP (1984) The relationship between cadmium uptake and heavy metal uptake tolerance in the lichen genus Peltigera. New Phytol 97:301–311

    Article  CAS  Google Scholar 

  • Biebl R (1962) Protoplasmatische Ökologie der Pflanzen, Wasser und Temperatur. Protoplasmatologia XII, 1. Springer, Wien, 344 pp

    Google Scholar 

  • Birse EM, Landsberg SY, Gimingham CH (1957) The effects of burrial by sand on dune mosses. Trans Br Bryol Soc 3:285–301

    Google Scholar 

  • Bravo LA, Ulloa N, Zuniga GE, Casanova A, Corcuera LJ, Alberdi M (2000) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  Google Scholar 

  • Broady PA (1977) The Signy Island terrestrial reference sites: VII. The ecology of the algae sites 1. A moss turf. Br Antarct Surv Bull 45:47–62

    Google Scholar 

  • Broady PA (1979) Quantitative studies on the terrestrial algae of Signy Island, South Orkney Islands. Br Antarct Surv Bull 47:31–41

    Google Scholar 

  • Broady PA, Given D, Greenfield LG, Thompson K (1987) The biota and environment of fumaroles on Mt. Melbourne, northern Victoria Land. Polar Biol 7:97–113

    Article  Google Scholar 

  • Cabello MLG, Pollero R (1994) Glomus antarcticum sp. nov., a vascular-arbuscular mycorrhizal fungus form Antarctica. Mycotaxon 51:123–128

    Google Scholar 

  • Callaghan TV, Collins NJ (1981) Life cycles, population dynamics, and the growth of tundra plants. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 257–284

    Google Scholar 

  • Cameron RE (1971) Antarctic soil microbial and ecological investigation. In: Quam LO (ed) Research in the Antarctic. American Association for the Advances of Sciences, Washington, DC, pp 137–289

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam

    Google Scholar 

  • Carstairs AG, Oechel WC (1978) Effects of several microclimatic factors and nutrients on net carbon dioxide exchange in Cladonia alpestris (L.) Rabh. in the subarctic. Arct Alp Res 10:81–94

    Article  Google Scholar 

  • Castello M, Nimis PL (1995) The lichen vegetation of Terra Nova Bay (Victoria Land, Continental Antarctica). In: Farkas EE, Lücking R, Wirth V (eds) Lichenological papers dedicated to Antonin Vezda. Bibliotheca Lichenologica 58. J. Cramer in der Gebrüder Bornträger Verlagsbuchhandlung, Berlin, pp 43–55

    Google Scholar 

  • Chen J, Blume HP. Beyer L (2000) Weathering of rocks induced by lichen colonization — a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Chapin FS, Chapin MC (1980) Revegetation of an Arctic disturbed site by native tundra species. J Appl Ecol 17:449–456

    Article  Google Scholar 

  • Chapin FS, Johnson DA, McKendrick JD (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory. J Ecol 68:189–209

    Article  CAS  Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–93

    Article  CAS  Google Scholar 

  • Christie P, Nicolson Th (1983) Are mycorrhizas absent from the Antarctic? Trans Br Mycol Soc 80:557–560

    Article  Google Scholar 

  • Collins NJ (1969) The effects of volcanic activity on the vegetation of Deception Island. Br Antarct Surv Bull 21:79–940

    Google Scholar 

  • Collins CR, Farrar JF (1978) Structured resistances to moss transfer in the lichen Xanthoria parietina. New Phytol 31:71–78

    Article  Google Scholar 

  • Collins NJ (1973) Productivity of selected bryophytes in the maritime Antarctic. In: Bliss LC, Wiegolaski FE (eds) Proceedings of the conference on Primary Production and Production Processes. Tundra Biome, IBP Tundra Biome Steering Committee, Edmonton, pp 177–183

    Google Scholar 

  • Collins NJ (1976a) Growth and population dynamics of the moss Polytrichum alpestre in the maritime Antarctic. Oikos 27:389–401

    Article  Google Scholar 

  • Collins NJ (1976b) The development of moss-peat banks in relation to changing climate and ice cover on Signy Island in the maritime Antarctic. Br Antarct Surv Bull 43:85–102

    Google Scholar 

  • Collins NJ (1977) The growth of mosses in two contrasting communities in the maritime Antarctic: measurement and prediction of net annual production. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, pp 921–933

    Google Scholar 

  • Collins NJ, Baker JH, Tilbrook PJ (1975) Signy Island, maritime Antarctic. In: Rosswall T, Heal OW (eds) Structure and function of tundra ecosystems. Ecological Bulletin 20, Stockholm, pp 345–374

    Google Scholar 

  • Collins NJ, Callaghan TV (1977) Bryophyte ecophysiology in polar regions. Institute of Terrestrial Ecology, Annual Report 1977, pp 11–16

    Google Scholar 

  • Collins NJ, Callaghan TV (1980) Predicted patterns of photosynthetic production in maritime Antarctic mosses. Ann Bot 45:601–620

    Google Scholar 

  • Collins NJ, Oechel WC (1974) The pattern of growth and translocation of photosynthate in a tundra moss, Polytrichum alpinum. Can J Bot 52:355–363

    Article  Google Scholar 

  • Convey P (1994) Photosynthesis and dark respiration in Antarctic mosses — an initial comparative study. Polar Biol 14:65–69

    Article  Google Scholar 

  • Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134

    Google Scholar 

  • Corner RW, Lewis Smith RI (1973) Botanical evidence of ice recession in the Argentine Islands. Br Antarct Surv Bull 35:83–86

    Google Scholar 

  • Corner RWM (1971) Studies in Colobanthus quitensis (Kunth) Bartl and Deschampsia antarctica Desv.: IV Distribution and reproduction performance in the Argentine Islands. Br Antarct Surv Bull 26:41–50

    Google Scholar 

  • Corte A (1961) La primera fanerogama adventicia hallada en el continente antartico. Contrib Inst Antart Argentino (Buenos Aires) 62:1–14

    Google Scholar 

  • Crittenden PD, Kershaw KA (1978) Discovering the role of lichens in the nitrogen cycle in boreal-Arctic ecosystems. Bryologist 81:258–267

    Article  CAS  Google Scholar 

  • Crittenden PD (1996) The effect of oxygen deprivation on inorganic nitrogen uptake in an Antarctic macrolichen. Lichenologist 28:347–354

    Google Scholar 

  • Davey A (1983) Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica. Polar Biol 2:95–100

    Article  CAS  Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune, Vaucher at the Vestfold Hills, Antarctica. Phycologia 22:377–385

    Article  Google Scholar 

  • Davey MC (1997a) Effects of physical factors on photosynthesis by the Antarctic liverwort Marchantia berteroana. Polar Biol 17:219–227

    Article  Google Scholar 

  • Davey MC (1997b) Effects of short-term dehydration and rehydration on photosynthesis and respiration by Antarctic bryophytes. Environ Exp Bot 37:187–198

    Article  CAS  Google Scholar 

  • Davey MC, Rothery P (1996) Seasonal variation in respiratory and photosynthetic parameters in three mosses from the maritime Antarctic. Ann Bot 78:719–728

    Article  Google Scholar 

  • Davey MC, Rothery P (1997) Interspecific variation in respiratory and photosynthetic parameters in Antarctic bryophytes. New Phytol 137:1–10

    Article  Google Scholar 

  • Davis R (1980) Peat respiration and decomposition in Antarctic terrestrial moss communities. Biol J Linn Soc 14:39–49

    Article  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Article  Google Scholar 

  • Davis RC (1983) Prediction of net primary production in two Antarctic mosses by two models of net CO2 fixation. Br Antarct Surv Bull 59:47–61

    Google Scholar 

  • Davis RC, Harrison PM (1982) Prediction of photosynthesis in maritime Antarctic mosses. Com Natl Fr Rech Antarct 51:241–247

    Google Scholar 

  • Day TA, Grobe CW, Ruhland CT (1995) Impacts of climate change on Antarctic vascular plants: warming and ultraviolet-B radiation. Antarct J US Rev 1996:226

    Google Scholar 

  • Day TA, Ruhland CT, Xiong F (1997) Impacts of ultraviolet-B radiation and regional warming on Antarctic vascular plants. Antarct J US Rev 1997:155

    Google Scholar 

  • Demmig-Adams B, Maguas C, Adams WW, Meyer A, Kilian E, Lange OL (1990) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green photobionts. Planta 180:400–409

    Article  CAS  Google Scholar 

  • Dircksen A (1964) Vergleichende Untersuchungen zur Frost-, Hitze-und Austrocknungsresistenz einheimischer Laub-und Lebermoose unter besonderer Berücksichtigung jahreszeitlicher Veränderungen. PhD Thesis, University of Göttingen

    Google Scholar 

  • Doebbeler P (1978) Ascomycete parasites of moss 1. Pyrenomycete species occurring on gametophytes. Mitt Bot Staatssamml München 14:1–360

    Google Scholar 

  • Edwards JA (1973) Vascular plant production in the maritime Antarctic. In: Bliss LC, Wiegolaski FE (eds) Primary production and production processes. Tundra Biome, Tundra Biome Steering Committee, Stockholm, pp 169–175

    Google Scholar 

  • Edwards JA (1974a) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctia Desv.: VI. Reproductive performance on Signy Island. Brit Antarct Surv Bull 39:67–86

    Google Scholar 

  • Edwards JA (1974b) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. PhD Thesis, University of Birmingham

    Google Scholar 

  • Edwards JA (1980) An experimental introduction of vascular plants from South Georgia to the maritime Antarctic. Br Antarct Surv Bull 49:73–80

    Google Scholar 

  • Edwards JA, Greene DM (1973) The survival of Falkland Islands transplants at South Georgia and Signy Island, South Orkney Islands. Br Antarct Surv Bull 33,34:33–45

    Google Scholar 

  • Edwards JA, Lewis Smith RI (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br Antarct Surv Bull 81:43–63

    Google Scholar 

  • Engelskjkøn T (1986) Botany of two Antarctic mountain ranges: Gjelsvikfjella and Mühlig-Hofmannfjella, Dronning Maud Land. Pol Res 4:205–224

    Article  Google Scholar 

  • Englund B, Meyerson H (1974) In situ measurement of nitrogen fixation at low temperatures. Oikos 25:283–287

    Article  Google Scholar 

  • Fabiszewski J, Wojtuń B (2000) Chemical composition of some dominating plants in the maritime Antarctic tundra (King George Island). Bibl Lichenol 75:127–135

    Google Scholar 

  • Fahselt D, Maycock PF, Svoboda J (1988) Initial establishment of saxicolous lichens following recent glacial recession in Sverdrup Pass, Ellesmere Island, Canada. Lichenologist 20:253–268

    Article  Google Scholar 

  • Fenton JHC (1978) The growth of Antarctic moss-peat banks. PhD Thesis, University of London (Westfield College)

    Google Scholar 

  • Fenton JHC (1980) The rate of peat accumulation in Antarctic moss banks. J Ecol 68:211–228

    Article  Google Scholar 

  • Fenton JHC (1982) The formation of vertical edges on Antarctic moss peat banks. Arct Alp Res 14:21–26

    Article  Google Scholar 

  • Filson RB (1966) The lichens and mosses of Mac Robertson Land. ANARE Sci Rep, Series B(2) Bot, Melbourne, 169 pp

    Google Scholar 

  • Fogg GE, Stewart WDP (1968) In situ determinations of biological nitrogen fixation in Antarctica. Br Antarct Surv Bull 15:39–46

    Google Scholar 

  • Follmann G (1965) Una asociación nitrófila de líquenes epip étricos de la Antártida occidental con Ramalina terebrata Tayl. et al. Hook como especie caracterizante. Inst AntartChil 4:1–18

    Google Scholar 

  • Fowbert JA, Lewis Smith RI (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alp Res 26:290–296

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108

    Article  CAS  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    Article  PubMed  CAS  Google Scholar 

  • Gannutz TP (1970) Photosynthesis and respiration of plants in the Antarctic Peninsula area. Antarct J US 5:49–52

    Google Scholar 

  • Gannutz TP (1971) Ecodynamics of lichen communities in Antarctica. In: Quam LO (ed) Research in the Antarctic. AAAS, Washington, pp 213–326

    Google Scholar 

  • Garty J, Galun M, Kessel M (1979) Localisation of heavy metals and other elements accumulated in the lichen thallus. New Phytol 82:159–168

    Article  CAS  Google Scholar 

  • Gimingham CH, Lewis Smith RI (1970) Bryophyte and lichen communities in the maritime Antarctic. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic Press, London, pp 752–785

    Google Scholar 

  • Gimingham CH, Lewis Smith RI (1971) Growth form and water relations in mosses in the maritime Antarctic. Brit Antarct Surv Bull 25:1–21

    Google Scholar 

  • Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens III. Translocation in the thallus of Peltigera canina and P. rufescens. New Phytol 90:73–84

    Article  CAS  Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze ED, Caldwell MM (eds) Ecological studies, vol 100. Springer, Berlin Heidelberg New York, pp 319–341

    Google Scholar 

  • Green TGA, Schroeter B, Sancho LG (1999) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 495–542

    Google Scholar 

  • Green TGA, Maseyk K, Pannewitz S, Schroeter B (2000) Extreme elevated in situ carbon dioxide levels around the moss Bryum subrotundifolium JAEG., BER. S. GALL. in Antarctica. Bibl Lichenol 75:397–403

    Google Scholar 

  • Green TGA, Schroeter B, Seppelt RD (2000) Effect of temperature, light and ambient UV on the photosynthesis of the moss Bryum argenteum. Hedw. in continental Antarctica. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider understanding. New Zealand Natural Science, Christchurch, pp 165–170

    Google Scholar 

  • Greenfield LG (2000) Some properties of water soluble substances from Antarctic and arctic mosses and lichens. Bibl Lichenol 75:127–135

    Google Scholar 

  • Grobe CW, Ruhland CT, Day TA (1997) A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arct Alp Res 29:217–221

    Article  Google Scholar 

  • Harrison PM, Walton DWH, Rothery P (1989) The effects of temperature and moisture on CO2-uptake and total resistance to water loss in the Antarctic foliose lichen Umbilicaria antarctica. New Phytol 111:673–682

    Article  Google Scholar 

  • Hébant C (1977) The conducting tissues of bryophytes. Cramer, Vaduz Holder JM, Wynn Williams DD, Rull Perez F, Edwards HGM (2000) Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytol 145:271–280

    Google Scholar 

  • Holdgate MW, Allen SE, Chambers MJG (1967) A preliminary investigation of the soils of Signy Island, South Orkney Islands. Br Antarct Surv Bull 12:53–71

    Google Scholar 

  • Holtom A, Greene SW (1967) The growth and reproduction of Antarctic flowering plants. In: Smith JE (ed) A discussion on the terrestrial Antarctic ecosystems. Physiol Trans R Soc B252:323–337

    Google Scholar 

  • Hooker TN (1977) The growth and physiology of Antarctic lichens. PhD Thesis, University of Bristol

    Google Scholar 

  • Hooker TN (1980) Factors affecting the growth of Antarctic crustose lichens. Lichenologist 12:313–323

    Article  Google Scholar 

  • Horne AJ (1972) The ecology of nitrogen fixation on Signy Island, South Orkney Islands. Br Antarct Surv Bull 27:1–18

    Google Scholar 

  • Hoshiai T (1970) Willow cultivation at Syowa Station. Polar News 5, 2:30–31

    Google Scholar 

  • Hovenden MJ, Seppelt RD (1995) Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenologist 27:505–516

    Google Scholar 

  • Huntley BJ (1971) Vegetation. In: van Zinderen Bakker JM, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward Islands. Balkema, Capetown, pp 98–160

    Google Scholar 

  • Hyvärinen M, Crittenden PD (2000) 33P translocation in the thallus of the mat-forming lichen Cladonia portentosa. New Phytol 145:281–288

    Article  Google Scholar 

  • Imura S, Higuchi M, Kanda H, Iwatsuki Z (1994) Structure of moss colonies in the Syowa Station area, Antarctica. Proceedings of the National Institute of Polar Research, Symposium of Polar Biol 7:232–236

    Google Scholar 

  • Imura S, Bando T, Saito S, Seto K, Kanda H (1999) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140

    Article  Google Scholar 

  • Ino Y (1983) Estimation of primary production in moss community on East Ongul Island, Antarcica. Antarct Rec 80:30–38

    Google Scholar 

  • Ino Y (1990a) Field measurement of net photosynthesis of mosses at Langhovde, East Antarctica. Ecol Res 5:195–205

    Article  Google Scholar 

  • Ino Y (1990b) Comparison of net photosynthesis and dark respiration of Antarctic mosses measured in the Antarctic and in Japan. Proc NIPR Symp Polar Biol 3:245–253

    Google Scholar 

  • Jacobsen P, Kappen L (1988) Lichens from the Admiralty Bay region, King George Island (South Shetland Islands), Antarctica. Nova Hedw 46:503–510

    Google Scholar 

  • Johnston CG, Vestal JR (1986) Does iron inhibit cryptoendolithic microbial communities? Antarct J US 21:225–226

    Google Scholar 

  • Jones D (1988) Lichens and pedogenesis. In: Galun M (ed) Handbook of lichenology III. CRC Press, Boca Raton, pp 109–124

    Google Scholar 

  • Kallio P, Heinonen S (1971) Influence of short-term low temperature on net photosynthesis in some sub-Arctic lichens. Rep Kevo Subarct Res Stat 8:63–72

    Google Scholar 

  • Kallio P, Heinonen S (1973) Ecology of Rhacomitrium lanuginosum (Hedw.) Brid. Rep Kevo Subarct Res Stat 10:43–54

    Google Scholar 

  • Kallio P, Heinonen S (1975) CO2 exchange and growth of Rhacomitrium lanuginosum and Dicranum elongatum. In: Wielgolaski FE (ed) Plants and microorganisms. Fennoscandian Tundra Ecosystems. Part 1. Springer, Berlin Heidelberg New York, pp 138–148

    Chapter  Google Scholar 

  • Kanda H (1979) Regenerative development in culture of Antarctic plants of Ceratodon purpureus (Hedw.). Brid. Mem Natl Inst Pol Res, Spec Issue 11:58–69

    Google Scholar 

  • Kanda H, Iwatsuki Z (1989) Two aquatic mosses in the lakes near Syowa Station, Continental Antarctica. Hikobia 10:293–297

    Google Scholar 

  • Kanda H, Komárková V (1997) Antarctic terrestrial ecosystems. In: Wielgolaski FE (ed) Polar and alpine tundra. Ecosystems of the World, vol 3, Elsevier, Amsterdam, pp 721–761

    Google Scholar 

  • Kappen L (1973) Responses to extreme environments. In: Ahmadjan V, Hale ME (eds) The lichens. Academic Press New York, pp 310–380

    Google Scholar 

  • Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th Fries. Polar Biol 1:249–255

    Article  Google Scholar 

  • Kappen L (1985a) Vegetation and ecology of ice-free areas of northern Victoria Land, Antarctica. I: The lichen vegetation of Birthday Ridge and an inland mountain. Polar Biol 4:213–215

    Article  Google Scholar 

  • Kappen L (1985b) Water relations and net photosynthesis of Usnea. A comparison between Usnea fasciata (maritime Antarctic) and Usnea sulphurea (continental Antarctic). In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 41–56

    Chapter  Google Scholar 

  • Kappen L (1985 c) Lichen-habitats as micro-oases in the Antarctic — the role of temperature. Polarforschung 55:49–54

    Google Scholar 

  • Kappen L (1985d) Vegetation and ecology of ice-free areas of northern Victoria Land, Antarctica. II. Ecological conditions in typical microhabitats of lichens at Birthday Ridge. Polar Biol 4:227–236

    Article  Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology 2, CRC Press, Boca Raton, pp 37–100

    Google Scholar 

  • Kappen L (1989) Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state. Antarct Sci 1:31–34

    Google Scholar 

  • Kappen L (1993a) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology, Wiley-Liss, New York, pp 433–490

    Google Scholar 

  • Kappen L (1993b) Plant activity under snow and ice, with particular reference to lichens. Arctic 46:297–302

    Google Scholar 

  • Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324

    Article  Google Scholar 

  • Kappen L, Breuer M (1991) Ecological and physiological investigations in continental Antarctic cryptogams, II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarct Sci 3:273–278

    Google Scholar 

  • Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the Dry Valleys of southern Victoria Land, Antarctica. II. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  • Kappen L, Redon J (1984) Microclimate influencing the lichen vegetation on different aspects of a coastal rock in the maritime. Ser Cient INACH 31:53–65

    Google Scholar 

  • Kappen L, Redon J (1987) Photosynthesis and water relations of three maritime Antarctic lichen species. Flora 179:215–229

    Google Scholar 

  • Kappen L, Schroeter B, Green TGA, Seppelt RD (1998a) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113:325–331

    Article  Google Scholar 

  • Kappen L, Schroeter B, Green TGA, Seppelt RD (1998b) Microclimatic conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biol 19:101–106

    Article  Google Scholar 

  • Kappen L, Lewis Smith RI, Meyer, M (1989) Carbon dioxide exchange of two ecodemes of Schistidium antarctici in continental Antarctica. Polar Biol 9:415–422

    Article  Google Scholar 

  • Kappen L, Straka H (1988) Pollen and spores transport into the Antarctic. Polar Biol 8:173–180

    Article  Google Scholar 

  • Kappen L, Valladares F (1999) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 9–80

    Google Scholar 

  • Kennedy AD (1993a) Photosynthetic response of the Antarctic moss Polytrichum alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol 13:271–279

    Article  Google Scholar 

  • Kennedy AD (1993b) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Ann Rev Ecol Syst 16:683–704

    Article  Google Scholar 

  • Knops JMH, Nash TH III, Schlesinger WH (1994) The influence of epiphytic lichens on the nutrient cycling of a blue oak woodland. USDA Forest Service Gen. and Technical Reports PWS-GTR-160:75–82

    Google Scholar 

  • Lamb IM (1964) Antarctic lichens: I. The genera Usnea,Ramalina,Himantormia,Alectoria, Cornicularia. Brit Antarct Surv Sci Rep 38:34 pp

    Google Scholar 

  • Lange OL (1953) Hitze-und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140:39–97

    Google Scholar 

  • Lange OL (1965) Der CO2 Gaswechsel von Flechten nach Erwärmung im feuchten Zustand. Ber Dtsch Botan Ges 78:441–454

    CAS  Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2000) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rainforest in Panama. Flora 195:172–190

    Google Scholar 

  • Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. In: Llano GA (ed) Antarctic terrestrial biology. Antarct Res Ser 20, Am Geophys Union, Washington, pp 83–95

    Chapter  Google Scholar 

  • Lange OL, Metzner H (1965) Lichtabhängiger Kohlenstoffeinbau in Flechten bei tiefen Temperaturen. Naturwissenschaften 52:191–192

    Article  PubMed  CAS  Google Scholar 

  • Lange OL, Pfanz H, Kilian E, Meyer A (1990) Effect of low water potential on photosynthesis in intact lichens and their liberated algal components. Planta 182:467–472

    Article  Google Scholar 

  • Larson DW (1978) Patterns of lichen photosynthesis and respiration following prolonged frozen storage. Can J Bot 56:2119–2123

    Article  Google Scholar 

  • Lewis Smith RI (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. Ph D Thesis, British Antarctic Survey and Department of Botany, University of Aberdeen, 124pp

    Google Scholar 

  • Lewis Smith RI (1978) Summer and winter concentrations of sodium, potassium and calcium in some maritime Antarctic cryptogams. J Ecol 66:891–909

    Article  Google Scholar 

  • Lewis Smith RI (1982) Plant succession and re-exposed moss banks on a deglaciated headland in Arthur Harbour, Anvers Island. Br Antarct Surv Bull 51:193–199

    Google Scholar 

  • Lewis Smith RI (1984a) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 61–162

    Google Scholar 

  • Lewis Smith RI (1984b) Colonisation by bryophytes following recent volcanic activity on an Antarctic Island. J Hattori Bot Lab 56:53–63

    Google Scholar 

  • Lewis Smith RI (1984 c) Colonization and recovery by cryptogams following recent volcanic activity on Deception Island, South Shetland Islands. Br Antarctc Surv Bull 62:25–51

    Google Scholar 

  • Lewis Smith RI (1985) Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs, Springer, Berlin Heidelberg New York, pp 138–155

    Google Scholar 

  • Lewis Smith RI (1987) The bryophyte propagule bank of Antarctic fellfield soils. Symposia Biologica Hungarica 35. British Antarctic Survey, Natural Environment Research Council, Cambridge, pp 233–245

    Google Scholar 

  • Lewis Smith RI (1988a) Bryophyte oases in Ablation Valleys on Alexander Island, Antarctica. Bryologist 91:45–50

    Article  Google Scholar 

  • Lewis Smith RI (1988b) Classification and ordination of cryptogamic communities in Wilkes Land, Continental Antarctica. Vegetatio 76:155–166

    Google Scholar 

  • Lewis Smith RI (1988 c) Recording bryophyte microclimate in remote and severe environments. In: Glime IM (ed) Methods in bryology. Proc Methodol Worksh Maine, Hattori Botany Laboratory Nichinan

    Google Scholar 

  • Lewis Smith RI (1990a) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Springer, Berlin Heidelberg New York, pp 32–50

    Chapter  Google Scholar 

  • Lewis Smith RI (1990b) Plant community dynamics in Wilkes Land, Antarctica. Proc NIPR Symp Polar Biol 3:229–244

    Google Scholar 

  • Lewis Smith RI (1991) Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana 30:313–324

    Article  Google Scholar 

  • Lewis Smith RI (1993) The role of bryophyte propagule banks in primary succession: case-study of an Antarctic fellfield soil. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 55–78

    Google Scholar 

  • Lewis Smith RI (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Lewis Smith RI (1995) Ecosystems and community development: new biological research sites in the southwestern Antarctic Peninsula. Br Antarct Surv Annu Rep 1994-1995:84–86

    Google Scholar 

  • Lewis Smith RI (1996a) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146

    Article  Google Scholar 

  • Lewis Smith RI (1996b) Terrestrial and freshwater biotic components of the western Antarctic Peninsula. In: Ross RM, Hofmann EE, Quetin LB (eds) Ecological research west of the Antarctic Peninsula. Am Geophys Union, Antarct Res Ser 70: 15–59

    Google Scholar 

  • Lewis Smith RI (1997) Oases as centres of high plant diversity and dispersal in Antarctica. In: Howard-Williams, Haws I (eds) Ecosystem processes in Antarctic ice-free landscapes, Lyons, Balkema, Rotterdam, pp 119–128

    Google Scholar 

  • Lewis Smith RI (1999) Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. J Veget Sci 10:231–242

    Article  Google Scholar 

  • Lewis Smith RI (2000) Plants of extreme habitats in Antarctica. Bibl Lichenol 75:405–419

    Google Scholar 

  • Lewis Smith RI, Corner RWM (1973) Vegetation of the Arthur Harbour-Argentine Islands region of the Antarctic Peninsula. Br Antarct Surv Bull 33, 34:89–122

    Google Scholar 

  • Lewis Smith RI, Poncet S (1987) Deschampsia antarctica and Colobanthus quitensis in the Terra Firma Islands. Br Antarct Surv Bull 74:31–35

    Google Scholar 

  • Lindsay DC (1971) Vegetation of the South Shetland Islands. Br Antarct Surv Bull 25:59–83

    Google Scholar 

  • Lindsay DC (1978) The role of lichens in Antarctic ecosystems. Bryologist 81:268–276

    Article  Google Scholar 

  • Linskens HF, Bargagli R, Cresti M, Focardi S (1993) Entrapment of long-distance transported pollen grains by various moss species in coastal Victoria Land, Antarctica. Polar Biol 13:81–87

    Google Scholar 

  • Longton RE (1967) Vegetation in the maritime Antarctic. Philos Trans R Soc Lond Ser B 252:213–235

    Article  Google Scholar 

  • Longton RE (1970) Growth and productivity of the moss Polytrichum alpestre Hoppe in Antarctic regions. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic Press, London, pp 818–837

    Google Scholar 

  • Longton RE (1972) Growth and reproduction in northern and southern hemisphere populations of the peat-forming moss Polytrichum alpestre with reference of the estimation of productivity. Proc 4th Int Peat Congr I-IV, Helsinki, pp 259–275

    Google Scholar 

  • Longton RE (1973) The occurrence of radial infection patterns in colonies of polar bryophytes. Br Antarct Surv Bull 32:41–49

    Google Scholar 

  • Longton RE (1974) Microclimate and biomass in communities of the Bryum association on Ross Island, continental Antarctica. Bryologist 77:109–127

    Article  Google Scholar 

  • Longton RE (1979) Studies on growth, reproduction and population ecology in relation to microclimate in the bipolar moss Polytrichum alpestre Hoppe. Bryologist 82:325–367

    Article  Google Scholar 

  • Longton RE (1984) The role of bryophytes in terrestrial ecosystems. J Hattori Bot Lab 55:147–163

    CAS  Google Scholar 

  • Longton RE (1985) Terrestrial habitats — Vegetation. In: Bonner WN, Walton DWH (eds) Key environments: Antarctica. Pergamon Press, Oxford, pp 73–105

    Google Scholar 

  • Longton RE (1988a) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Longton RE (1988b) Adaptations and strategies of polar bryophytes. Bot J Linn Soc 98:253–268

    Article  Google Scholar 

  • Longton RE, Greene SW (1967) The growth and reproduction of Polytrichum alpestre Hoppe on South Georgia. Philos Trans R Soc B 252:295–322

    Article  Google Scholar 

  • Lovelock CE, Osmond CB, Seppelt RD (1995a) Photoinhibition in the Antarctic moss Grimmia antarctici Card. when exposed to cycles of freezing and thawing. Plant Cell Environ 18:1395–1402

    Article  Google Scholar 

  • Lovelock CE, Jackson AG, Melick DR, Seppelt RD (1995b) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961

    PubMed  CAS  Google Scholar 

  • Mägdefrau H (1935) Untersuchung über die Wasserversorgung der Gametophyten und Sporophyten der Laubmoose. Z Bot 29:337–375

    Google Scholar 

  • Manrique E, Balagner L, Barnes J, Davidson AW (1993) Photoinhibition studies in lichens using chlorophyll fluorescence analysis. Bryologist 96:443–449

    Article  CAS  Google Scholar 

  • Marshall WA (1996) Biological particles over Antarctica. Nature 383:680

    Article  CAS  Google Scholar 

  • Marshall WA (1997) Seasonality in Antarctic airborne fungal spores. Appl Environ Microbiol 63:2240–2245

    PubMed  CAS  Google Scholar 

  • Matsuda T (1968) Ecological study of the moss community and microorganisms in the vicinity of Syowa Station, Antarctica. Jpn Antarct Res Exp Sci Rep E29:1–58

    Google Scholar 

  • Matsumoto G, Chikazawa K, Murayama H, Torii T, Fukushima H, Hanya T (1983) Distribution and correlation of total organic carbon and mercury in Antarctic dry valley soils, sediments and organisms. Geochem J 17:247–255

    Article  Google Scholar 

  • Matsumoto G, Kanda H (1985) Hydrocarbons, sterols and hydroxy acids in Antarctic mosses. Antarct Rec 87:23–31

    Google Scholar 

  • Melick DR, Bölter M, Möller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Islands Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64

    Article  Google Scholar 

  • Melick DR, Hovenden MJ, Seppelt RD (1994) Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, Continental Antarctica. Vegetatio 111:71–87

    Google Scholar 

  • Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:339–404

    Article  Google Scholar 

  • Melick DR, Seppelt RD (1997) Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica. J Ecol 85:43–56

    Article  Google Scholar 

  • Montiel PO, Cowan DA (1993) The possible role of soluble carbohydrates and polyols as cryoprotectants in Antarctic plants. In: Heywood RB (ed) University Research in Antarctica 1989-1992. British Antarctic Survey, Cambridge, pp 111–125

    Google Scholar 

  • Nakanishi S (1977) Ecological studies of the moss and lichen communities in the ice-free areas near Syowa Station, Antarctica. Antarct Rec 59:68–96

    Google Scholar 

  • Nakatsubo T, Ino Y (1986) Nitrogen cycling in an Antarctic ecosystem. 1: Biological nitrogen fixation in the vicinity of Syowa Station. Mem Natl Inst Polar Res E37:1–10

    Google Scholar 

  • Nash III TH (1989) Metal tolerance in lichens. In: Shaw AJ (ed) Heavy metal tolerance in plants. CRC Press, Boca Raton, pp 119–131

    Google Scholar 

  • Nash III TH (1996) Lichen biology. Cambridge University Press, Cambridge, 303 pp

    Google Scholar 

  • Nash III TH, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 16:269–276

    Article  Google Scholar 

  • Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichens. An overview. Bryologist 81:226–246

    Article  CAS  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 297–341

    Google Scholar 

  • Noakes TD, Longton RE (1989) Studies on water relations in mosses from the coldAntarctic. Antarct Spec Top:103–116

    Google Scholar 

  • Oechel WC, Sveinbjörnsson B (1978) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan Taiga. Springer, Berlin Heidelberg New York, pp 121–137

    Google Scholar 

  • Ochyra R (1998) The moss flora of King George Island, Antarctica. W Szafer Institute of Botany, Polish Academy of Sciences, Cracow, Poland

    Google Scholar 

  • Olech M (1990) Preliminary studies on ornithocoprophilous lichens of the Arctic and Antarctic regions. Proc NIPR Symp Polar Biol 3:218–223

    Google Scholar 

  • Olech M (1993) Lower plants. In: Rakusa-Suszcewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, pp 173–179

    Google Scholar 

  • Øvstedal DO (1983) Some lichens from H.U. Sverdrup Mountains, Dronning Maud Land, Antarctis. Nova Hedw 37:683–690

    Google Scholar 

  • Post A (1990) Photoprotective pigment as an adaptive strategy in the Antarctic moss Ceratodon purpureus. Polar Biol 10:241–245

    Article  Google Scholar 

  • Priddle J (1979) Morphology and adaptation of aquatic mosses in an Antarctic lake. J Bryol 10:517–529

    Google Scholar 

  • Puckett KJ (1988) Bryophytes and lichens as monitors of metal deposition. Bibl Lichenol 30:231–267

    Google Scholar 

  • Puckett KJ, Finegan EJ (1980) An analysis of the element content of lichens from the North West Territories, Canada. Canadian J Bot 58:2073–2089

    Article  CAS  Google Scholar 

  • Rastorfer JR (1970) Effects of light intensity and temperature on photosynthesis and respiration of two East Antarctic mosses Bryum argenteum and B. antarcticum. Bryologist 73:544–556

    Article  Google Scholar 

  • Rastorfer JR (1972) Comparative physiology of four west Antarctic mosses. In: Llano GA (ed) Antarctic terrestrial biology. American Geophysical Union, Washington, pp 143–161

    Chapter  Google Scholar 

  • Richardson DHS (1981) The biology of mosses. Blackwell, Oxford, 220 pp

    Google Scholar 

  • Richardson DHS, Nieboer E, Laroie P, Padovan D (1984) Anion accumulation by lichens I The characteristics and kinetics of arsenate uptake by Umbilicaria mühlenbergii. New Phytol 96:71–82

    Article  CAS  Google Scholar 

  • Rütten D, Santarius KA (1992) Age-related differences in frost sensitivity of the photosynthetic apparatus of two Plagiomnium species. Planta 187:224–229

    Article  Google Scholar 

  • Rütten D, Santarius KA (1992) Relationship between frost tolerance and sugar concentration of various bryophytes in summer and winter. Oecologia 91:260–265

    Article  Google Scholar 

  • Rütten D, Santarius KA (1993) Seasonal Variation in frost tolerance and sugar content of two Plagiomnium species. Bryologist 96:564–568

    Article  Google Scholar 

  • Ryan PG, Watkins BP (1989) The influence of physical factors and ornithogenic products on plant and arthropod abundance at an inland nunatak group in Antarctica. Polar Biol 10:151–160

    Google Scholar 

  • Ryan PG, Watkins BP, Lewis Smith RI, Dastych H, Eicker A, Foissner W, Heatwole H, Miller WR, Thompson G (1989) Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species lists. S Afr T Antarkt, Deel 19:10–20

    Google Scholar 

  • Salas MR (1983) Long-distance transport over the Tasman Sea: evidence from Macquarie Island. N Z J Bot 21:285–292

    Article  Google Scholar 

  • Sancho LG, Pintado A, Valladares F, Schroeter B, Schlensog M (1997) Photosynthetic performance of cosmopolitan lichens in the maritime Antarctic. Bibl Lichenol 67:197–210

    Google Scholar 

  • Sancho LG, Schulz F, Schroeter B, Kappen L (1999) Bryophyte and lichenflora of South Bay (Livingston Island: South Shetland Islands, Antarctica). Nova Hedw 68:301–337

    Google Scholar 

  • Sancho LG, Valladares F (1993) Lichen colonization of recent moraines on Livingston Island (South Shetland I., Antarctica). Polar Biol 13:227–233

    Article  Google Scholar 

  • Sancho LG, Valladares F, Pintado A, Schlensog M, Schroeter B (1997) Compartimiento fotosint ético de líquenes cosmopolitas en la Antártida marítima. Bol R Soc Esp Hist Nat (Sec Biol) 93(1-4):113–118

    Google Scholar 

  • Scheffer F, Schachtschabel P (1984) Lehrbuch der Bodenkunde, 11. Aufl. F. Enke, Stuttgart

    Google Scholar 

  • Schlensog M, Schroeter B (2000) Poikilohydry in Antarctic cryptogams and its role for photosynthetic performance in mesic and xeric habitats. In: Davison W, Howard Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Science, Christchurch, pp 175–182

    Google Scholar 

  • Schlensog M, Schroeter B, Sancho LG, Pintado A, Kappen L (1997a) Effect of strong irradiance on photosynthetic performance of the melt-water dependent cyanobacterial lichen Leptogium puberulum (Collemataceae) Hue from the maritime Antarctic. Bibl Lichenol 75:235–246

    Google Scholar 

  • Schlensog M, Schroeter B, Sancho LG, Pintado A, Kappen L (1997b) Photosynthetic performance of the cyanobacterial lichen Leptogium puberulum Hue (Collemataceae) in the maritime Antarctic. Bol R Soc Hesp Hist Nat (Sec Biol) 93:105–111

    Google Scholar 

  • Schofield E, Ahmadjan V (1972) Field observations and laboratory studies of some Antarctic cold desert cryptogams. In: Llano GA (ed) Antarctic terrestrial biology. Antarctic Research Series 20American Geophysical Union, Washington, pp 97–142

    Chapter  Google Scholar 

  • Schroeter B (1991) Untersuchungen zu Primärproduktion und Wasserhaushalt von Flechten der maritimen Antarktis unter besonderer Berücksichtigung von Usnea antarctica Du Rietz. Doctorate Thesis Math-Nat Fakultät, CAU, Kiel, 148 pp

    Google Scholar 

  • Schroeter B (1997) Grundlagen der Stoffproduktion von Kryptogamen unter besonderer Berücksichtigung der Flechten — Eine Synopse. Habilitation Math-Nat Fakultät, CAU, Kiel, 130 pp

    Google Scholar 

  • Schroeter B, Green TGA, Kappen L, Seppelt RD (1994) Carbon dioxide exchange at subzero temperatures. Field measurements on Umbilicaria aprina in Antarctica. Crypt Bot 4:233–241

    Google Scholar 

  • Schroeter B, Kappen L, Schulz F, Sancho LG (2000) Seasonal variation in the carbon balance of lichens in the maritime Antarctic: long-term measurements of photosynthetic activity in Usnea aurantiaco-atra. In: Davison W, Howard-Williams C, Broady P (eds) VII SCAR Intern Biol Symp Antarctic Ecosystems: Models for a wider ecological understanding. New Zealand Natural Science, Christchurch, pp 258–262

    Google Scholar 

  • Schroeter B, Olech M, Kappen L, Heitland W (1995) Ecophysiological investigations of Usnea antarctica in the maritime Antarctic. I. annual microclimatic conditions and potential primary production. Antarct Sci 7(3):251–260

    Article  Google Scholar 

  • Schroeter B, Sancho LG (1996) Lichens growing on glass in Antarctica. Lichenologist 28:385–390

    Google Scholar 

  • Schroeter B, Kappen L, Green TGA, Seppelt RD (1997a) Lichens and the Antarctic environment: effects of temperature and water availability on photosynthesis. In: Lyons WB, Howard-Williams WB, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 103–118

    Google Scholar 

  • Schroeter B, Schulz F, Kappen L (1997b) Hydration-related spatial and temporal variation of photosynthetic activity in Antarctic lichens. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities, species, structure and survival. Cambridge University Press, Cambridge, pp 221–225

    Google Scholar 

  • Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285

    Article  Google Scholar 

  • Seppelt RD, Ashton DH (1978) Studies on the ecology of the vegetation at Mawson Station, Antarctica. Aust J Ecol 3:373–388

    Article  Google Scholar 

  • Seppelt RD, Broady PA (1988) Antarctic terrestrial ecosystems: the Vestfold Hills in context. In: Ferris JM, Burton HR, Johnstone GW, Bayly IAE (eds) Biology of the Vestfold Hills, Antarctica., Hydrobiol 165:177–184

    Chapter  Google Scholar 

  • Seppelt RD Broady PA, Pickard J, Adamson DA (1988) Plants and landscape in the Vestfold Hills, Antarctia. In: Ferris JM, Burton HR, Johnstone GW, Bayly IAE (eds) Biology of the Vestfold Hills, Antarctica, Kluwer, Dordrecht, pp 185–196

    Chapter  Google Scholar 

  • Seppelt RD, Green TGA, Schroeter B (1995) Lichens and mosses from the Kar Plateau, Southern Victoria Land, Antarctica. N Z J Bot 33:203–220

    Article  Google Scholar 

  • Seppelt RD, Lewis Smith RI, Kanda H (1998) Antarctic bryology: past achievements and new perspectives. J Hattori Bot Lab 84:203–239

    Google Scholar 

  • Skre O, Berg A, Wielgolaski FE (1975) Organic compounds in alpine plants. In: Wielgolaski FE (ed) Fennoscandian Tundra ecosystems. 1. Plants and microorganisms, Springer, Berlin Heidelberg New York, pp 339–350

    Chapter  Google Scholar 

  • Smith AJE (1982) Epiphytes and epiliths. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 191–227

    Chapter  Google Scholar 

  • Smith VR (1988) Production and nutrient dynamics of plant communities on a sub-Antarctic Island. 5. Nutrient budgets and turnover times for mire-grasslands, fjaedmark and fernbrakes. Polar Biol 8:255–269

    Article  Google Scholar 

  • Smith VR (1993) Effects of nutrients on CO2 assimilation by mosses on a sub-Antarctic Island. New Phytol 123:693–697

    Article  CAS  Google Scholar 

  • Staaland H, Brattbakk I, Ekern K, Kildemo K (1983) Chemical composition of reindeer forage plants in Svalbard and Norway. Holarct Ecol 6:109–122

    CAS  Google Scholar 

  • Sveinbjörnsson B, Oechel WC (1983) The effect of temperature preconditioning on the temperature sensitivity of net CO2 flux in geographically diverse populations of the moss Polytrichum commune Hedw. Ecology 64:1100–1108

    Article  Google Scholar 

  • Syers JK, Iskandar IK (1973) Pedogenetic significance of lichens. In: Ahmadjan V, Hale ME (eds) The lichens. Academic Press, New York, pp 225–248

    Chapter  Google Scholar 

  • Tarnawski MD, Melick D, Roser D, Adamson E, Seppelt RD (1992) In situ carbon dioxide levels in cushion and turf forms of Grimmia antarctici at Casey Station, East Antarctica. J Bryol 17:241–249

    Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  • Tedrow JCF (1977) Soils of the polar landscapes. Rutgers University Press, New Brunswick

    Google Scholar 

  • Tilbrook PJ (1973) The Signy Island terrestrial reference sites: I. An introduction. Brit Antarct Surv Bull 33, 34:65–76

    Google Scholar 

  • Thomson JW (1972) Distribution patterns of American Arctic lichens. Can J Bot 50:1135–1156

    Article  Google Scholar 

  • Thomson JW (1997) American Arctic lichens. 2. The microlichens. The University of Wisconsin Press, Madison, Wisconsin, 675 pp

    Google Scholar 

  • Tuominen Y, Jaakkola T (1973) Absorption and accumulation of mineral elements and radioactive nucleides. In: Ahmadjan V, Hale ME (eds) The lichens. Academic Press, New York, pp 185–223

    Chapter  Google Scholar 

  • Ugolini FC (1970) Antarctic soils and their ecology. In: Holdgate MW (ed) Antarcic ecology, vol 2. Academic Press, London, pp 673–692

    Google Scholar 

  • Ugolini FC, Edmonds RL (1983) Soil biology In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy. iI. Concepts and interactions. Elsevier, Amsterdam, pp 193–231

    Chapter  Google Scholar 

  • Valladares F, Sancho LG (2000) The relevance of nutrient availability for lichen productivity in the maritime Antarctic. Bibl Lichenol 75:405–419

    Google Scholar 

  • Van Dobben H (1993) Vegetation as a monitor of deposition of nitrogen and activity. Doctorate Thesis, University of Utrecht

    Google Scholar 

  • Van Zanten BO (1978) Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J Hatt Bot Lab 44:455–482

    Google Scholar 

  • Vestal JR (1988) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic Desert. Appl Environ Microbiol 54(4):960–965

    PubMed  CAS  Google Scholar 

  • Vincent WF (1997) Polar desert ecosystems in a changing climate: a north-south perspective. In: Howard-Williams, Hawes (eds) Ecosystem process in Antarctic ice-free landscapes. Lyons, Balkema, Rotterdam, pp 3–14

    Google Scholar 

  • Walton DWH (1982) The Signy Island terrestrial reference sites. XV. Micro-climate monitoring, 1972-74. Br Antarct Surv Bull 55:111–126

    Google Scholar 

  • Walton DWH (1985) A preliminary study of the action of crustose lichens on rock surfaces in Antarctica. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 180–185

    Google Scholar 

  • Walton DWH, Lewis Smith RI (1980) Chemical composition of South Georgian plants. Br Antarct Surv Bull 49:117–135

    Google Scholar 

  • Weed R, Norton SA (1991) Siliceous crusts, quartz rinds and biotic weathering of sandstone in the cold desert of Antarctica. In: Berthelin J (ed) Diversity of environmental biogeochemistry. Developments in geochemistry 6. Elsevier, Amsterdam, pp 327–339

    Google Scholar 

  • Wessels DC, Schoemann P (1988) Mechanisms and rate of weathering of Clarence sandstone by an endolithic lichen. S Afr J Sci 84:274–277

    Google Scholar 

  • Wierzchos J, Ascaso C (1996) Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays Clay Miner 44:652–657

    Article  CAS  Google Scholar 

  • Williams PG, Roser DJ, Seppelt RD (1994) Mycorrhizas of hepatics in continental Antarctica. Mycol Res 98:34–36

    Article  Google Scholar 

  • Winkler JB, Schulz F, Kappen L (1998) Seasonal variation of abiotic factors in terrestrial habitats. Ber Polarforsch (Alfred-Wegener-Institut für Polarforschung, Bremerhaven) 299:28–32

    Google Scholar 

  • Winkler JB, Kappen L, Schulz F (2000) Snow and ice as an important ecological factor for the cryptogams in the maritime Antarctic. In: Howard-Williams, C, Davison W (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Science, Christchurch, pp 220–224

    Google Scholar 

  • Winner WE, Atkinson CJ, Nash III TH (1988) Comparison of SO2 absorption capacities of mosses, lichens and vascular plants in diverse habitats. Bibl Lichenol 30:217–230

    Google Scholar 

  • Young SB, Kläy J-R (1971) Bryophytes in the 1969 crater of Deception Island, Antarctica: an apparent case of rapid long-distance dispersal. Ohio J Sci 71:358–362

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappen, L., Schroeter, B. (2002). Plants and Lichens in the Antarctic, Their Way of Life and Their Relevance to Soil Formation. In: Beyer, L., Bölter, M. (eds) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56318-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62674-6

  • Online ISBN: 978-3-642-56318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics