Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 154))

Abstract

It is more than a small step into the living sphere of microorganisms. They have special demands for their living space, like plants for their rooting space. The supply of heat, water, soil gases, organic matter and inorganic nutrients presents the general framework. The range of their homes and their activities at the micro-scale is dominated much more directly by physical and chemical laws. Transport mechanisms of dissolved organic and inorganic nutrients as well as gases primarily follow the forces of diffusion rather than active transport mechanisms. Originally, physically driven movements, e.g. cryoturbation, become more important than biomechanical activities, e.g. bioturbation. This holds especially true for the polar soils, where only few micro-arthropods and nematodes can be busy at this job (Block 1984). Thus, we shift from animal-mediated transport of material and breakdown of structural matter and approach an environment of chemical processes driven by physical processes, mainly temperature. This applies to the final degradation of organic matter by enzymes as well as for the chemical weathering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addicott JF, Aho JM, Antolin MF, Padilla DK, Richardson JS, Soluk DA (1987) Ecological neighbourhoods: scaling environmental patterns. Oikos 49:340–346

    Article  Google Scholar 

  2. Azam F, Ammerman JW (1984) Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems. Plenum Press, New York, pp 345–360

    Chapter  Google Scholar 

  3. Batten DS, Svoboda J (1994) Plant communities on the uplands in the vicinity of the Alexandra Fiord Lowland. In: Svoboda J, Friedman B (ed) Ecology of a polar oasis, Alexandra Fiord, Ellesmere Island. Captus University Press, Toronto, pp 97–110

    Google Scholar 

  4. Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 163–236

    Google Scholar 

  5. Block W, Convey P (1995) The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. J Zool Lond 236:431–449

    Article  Google Scholar 

  6. Blume H-P, Beyer L, Friedrich F (1991) Correlations between microbial activity, water, air temperature and nutrient status of soils under different land use. In: Esser D, Overdiek D (eds) Modern ecology — basic and applied aspects. Elsevier, Amsterdam, pp 321–346

    Google Scholar 

  7. Blume H-P, Bölter M (1996) Wechselwirkungen zwischen Boden-und Vegetationsentwicklung in der Kontinentalen Antarktis. Verh Ges Ökol 25:25–34

    Google Scholar 

  8. Blume, H-P, Beyer L, Bölter M, Erlenkeuser H, Kalk E, Kneesch S, Pfisterer U, Schneider D (1997) Pedogenic zonation in soils of the southern circumpolar region. Adv GeoEcol 30:69–90

    CAS  Google Scholar 

  9. Bölter M (1989) Microbial activity in soils from Antarctica (Casey Station, Wilkes Land). Proc NIPR Symp Polar Biol 2: 46–153

    Google Scholar 

  10. Bölter M (1990a) Microbial ecology of soils from Wilkes Land, Antarctica: II. Patterns of microbial activity and related organic and inorganic matter. Proc NIPR Symp Polar Biol 3:120–132

    Google Scholar 

  11. Bölter M (1990b) Evaluation — by cluster analysis — of descriptors for the establishment of significant subunits in Antarctic soils. Ecol Modell 50:79–94

    Article  Google Scholar 

  12. Bölter M (1991) Microbial mineralization in soils and plant material from Antarctica. In: Weller G, Wilson CL, Severin BAB (eds) International conference on the role of the polar regions in global change. Proc Conf, 11-15 June 1990, University of Alaska Fairbanks, vol II. Geophys Inst Univ Alaska, Fairbanks, pp 418–422

    Google Scholar 

  13. Bölter M (1993) Effects of carbohydrates and leucine on growth of bacteria from Antarctic soils (Casey Station, Wilkes Land). Polar Biol 13:297–306

    Article  Google Scholar 

  14. Bölter M (1995) Distribution of bacterial numbers and biomass in soils and on plants from King George Island (Arctowski Station, maritime Antarctica). Polar Biol 15:115–124

    Article  Google Scholar 

  15. Bölter M, Kappen L, Meyer M (1989) The influence of microclimate conditions on potential photosynthesis of Usnea sphacelata: a model. Ecol Res 4:297–307

    Article  Google Scholar 

  16. Bölter M, Blume H-P, Kappen L (1995) Bodenbiologische Untersuchungen in der maritimen und kontinentalen Antarktis (King George Island und Windmill Islands). Teil 1. Umweltparameter und anorganische Nährstoffe. Polarforschung 65:41–61

    Google Scholar 

  17. Bölter M, Pfeiffer E-M (1997) Bacterial biomass and properties of Arctic desert soils. In: Iskandar IK, Wright EA, Radke JK, Sharratt BS, Groenevelt PH, Hinzman LD (eds) Proc Int Symp on Physics, Chemistry, and Ecology of Seasonally Frozen soils. CRREL Spec Rep 97-10, pp 481–487

    Google Scholar 

  18. Bölter M, Blume H-P, Schneider D Beyer L (1997) Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304

    Article  Google Scholar 

  19. Booth IR (1999) Adaptation to extreme environments. In: Lengeler JW, Drews G Schlegel HG (eds) Biology of the prokaryotes. Thieme, Stuttgart, pp 652–671

    Google Scholar 

  20. Borowitzka LJ (1981) Solute accumulation and regulation of cell water activity. In: Paleg LG, Aspinall D (ed) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 652–671

    Google Scholar 

  21. Broady P (1981) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. BrPhycolJ 16:231–240

    Google Scholar 

  22. Chapin FS III, Shaver GR (1985) Arctic. In: Chabot BF, Mooney HA (ed) Physiological ecology of North American plant communities. Chapman and Hall, New York, pp 16–40

    Chapter  Google Scholar 

  23. Chen J, Blume H-P (1996) Study on the dynamics of soil moisture in an ice-free area of the Fildes Peninsula, King George Island, the maritime Antarctic. Polarforschung 66:11–18

    Google Scholar 

  24. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization — a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  25. Convey P, Block W (1996) Antarctic Diptera: ecology, physiology and distribution. Eur J Entomol 93:1–13

    Google Scholar 

  26. Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  27. Freytag HE, Jäger R, Lüttich M (1987) Berechnung des Temperatur-und Feuchteeinflusses auf die Bodenatmung auf zwei verschiedenen Wegen. Arch Acker-Pflanzenbau Bodenkd Berl 31:513–520

    Google Scholar 

  28. Gold WG, Bliss LC (1995) Water limitations and plant community development in a polar desert. Ecology 76:1558–1568

    Article  Google Scholar 

  29. Haider K (1996) Biochemie des Bodens. Enke, Stuttgart

    Google Scholar 

  30. Hattori T, Hattori R (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit Rev Microbiol 4:423–461

    Article  PubMed  CAS  Google Scholar 

  31. Jonasson S, Vestergaard P, Jensen M, Michelsen A (1996a) Effects of carbohydrate amendments on nutrient partitioning, plant and microbial performance of a grassland-shrub ecosystem. Oikos 75:220–226

    Article  Google Scholar 

  32. Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996b) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–515

    Article  Google Scholar 

  33. Kappen L, Bölter M, Kühn A (1987) Photosynthetic activity of lichens in natural habitats in the maritime Antarctic Bibl Lichenol 25: 97–312

    Google Scholar 

  34. Kappen L, Breuer M, Bölter M (1991) Ecological and physiological investigations in continental Antarctic cryptogams. 3. Photosynthetic production of Usnea sphacelata: diurnal courses, models, and effect of photoinhibition Polar Biol 11:393–401

    Article  Google Scholar 

  35. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  36. Kilham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  37. Kuhn D (1997) Genese, Ökologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der King George Insel, West-Antarktis. Schriftenr Inst Bodenkd Univ Kiel 40:1–173

    Google Scholar 

  38. Lawler DM (1988) A bibliography of needle ice. Cold Reg Sci Tech 15:295–310

    Article  Google Scholar 

  39. Lynch JM (1982) Limits to microbial growth in soil. J Gen Microbiol 128:405–410

    Google Scholar 

  40. Machulla G, Blume H-P, Jahn R (2001) Schätzung der mikrobiellen Biomasse von Böden aus anthropogenen und natürlichen Substraten — ein Beitrag zur Standortbewertung. J Plant Nutr Soil Sci 164:547–554

    Article  CAS  Google Scholar 

  41. Maulla G (1997) Microbial activity. In: Blume H-P, Schleu ß U (eds) Assessment of anthropogenic soils in cities. Schriftenr Inst Pflanzenern Bodenkd Univ Kiel 38:176–192

    Google Scholar 

  42. Maki LR, Galyan ME, Chien ME, Caldwell DR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–459

    PubMed  CAS  Google Scholar 

  43. Marion GM (1995) Freeze-thaw processes and soil chemistry. CRREL Spec Rep 95-12:1–23

    Google Scholar 

  44. Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:399–404

    Article  Google Scholar 

  45. Melick DR, Seppelt RD (1994) The effect of hydration on carbohydrate levels, pigment content and freezing point of Umbilicaria decussata at a continental Antarctic locality. Crypt Bot 4:212–217

    Google Scholar 

  46. Melick DR, Bölter M, Möller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Island Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64

    Article  Google Scholar 

  47. Monrozie, LJ, Ladd JN, Fitzpatrick RW, Foster RC, Raupach M (1991) Components and microbial biomass content of size fractions in soils of contrasting aggregation. Geoderma 49:37–62

    Article  Google Scholar 

  48. Nedwell DB, Rutter M (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl Environ Microbiol 60:1984–1992

    PubMed  CAS  Google Scholar 

  49. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann, EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  50. Orchard VA, Cook FJ (1983) Relationships between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Article  Google Scholar 

  51. Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  52. Richards LA (1954) Diagnosis and improvement of saline and alkaline soils. Agric Handbook No 60, US Dept Agric, Washington, DC

    Google Scholar 

  53. Rutter M, Nedwell DB (1994) Influence of changing temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: competition and survival in non-steady-state temperature environments. Appl Environ Microbiol 60:1993–2002

    PubMed  CAS  Google Scholar 

  54. Sakai A, Larcher W (1987) Frost survival of plants. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  55. Schinner F, Sonnleitner R (1996) Bodenökologie: Mikrobiologie und Bodenenzymatik. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  56. Schlichting E, Blume H-P, Stahr K(eds) (1995) Pedological traineeship. Blackwell, Berlin

    Google Scholar 

  57. Schmidt SK, Gier MJ (1990) Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. Appl Environ Microbiol 56:2692–2697

    PubMed  CAS  Google Scholar 

  58. Schnell RC, Valli G (1972) Atmospheric ice nuclei from decomposing vegetation. Nature 236:163–165

    Article  Google Scholar 

  59. Singer MJ, Ugolini FC (1976) Hydrophobicity in the soils of Findley Lake, Washington. For Sci 22:54–58

    CAS  Google Scholar 

  60. Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215

    Article  Google Scholar 

  61. Tate RL (1995) Soil microbiology. Wiley, New York

    Google Scholar 

  62. Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  63. Törne Ev (1990) Assessing feeding activities of soil-living animals. I. Bail-lamina-tests (1). Pedologia 34:89–101

    Google Scholar 

  64. White DC (1995) Chemical ecology: possible linkage between macro-and microbial ecology. Oikos 74:177–184

    Article  Google Scholar 

  65. Wilson JM, Griffin DM (1975) Water potential and the respiration of microorganisms in the soil. Soil Biol Biochem 7:199–204

    Article  Google Scholar 

  66. Wood M (1995) Environmental soil biology. Blackie, London

    Book  Google Scholar 

  67. Zak J, Whitford W (1988) Interactions among soil biota in desert ecosystems. Agric Ecosyst Environ 24:87–100

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bölter, M., Blume, HP. (2002). Soils as Habitats for Microorganisms. In: Beyer, L., Bölter, M. (eds) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56318-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62674-6

  • Online ISBN: 978-3-642-56318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics