Skip to main content

High-Field Magnetization Process and Crystalline Electric Field Interaction in Rare-Earth Permanent-Magnet Materials

  • Chapter
Materials Science in Static High Magnetic Fields

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 4))

Abstract

During the last two decades the performance of permanent magnets has been greatly improved by introducing rare-earth (R) elements to their constituents [1]. It is doubtless that the high coercivity of these magnets comes from the large magnetic anisotropy originated by the crystalline electric field (CEF) acting on R ions with large orbital angular momentum. Magnetization measurements up to the high-field region, where the hard-axis magnetization saturates, are indispensable in order to obtain the basic insight into the magnetic anisotropy. Since 1985, we have been investigating systematically the high-field magnetization in a series of Nd2Fe14B-type compounds using mainly single crystal samples [2]. On the other hand, we have developed a method of analyzing these magnetization curves which consists of a simplified Hamiltonian taking the exchange and crystal field at the R ions into account, with the Fe sublattice being treated phenomenologically [3]. The essential feature in this model is the coupling of the two different types of sublattices. One is the R sublattice, which gives a large magnetic anisotropy owing to the CEF interaction. Another is the Fe sublattice, which determines the large magnetization and high Curie temperature as a result of strong Fe-Fe exchange interactions. This method has proven to be applicable not only to the R 2 M 14B system, with M = Fe or Co, but also to the pseudo-ternary system (R 1−x R′ x )2Fe14B [4] or other R-Fe-X systems such as R 2Fe17N x [5]. In these systems an interplay among the R-Fe exchange interaction, CEF potential acting on R ions and a large magnetic moment of the Fe sublattice leads to a variety of magnetic properties such as a first-order magnetization process (FOMP) and spin reorientation (SR) transitions. In general, such SR transitions will be accompanied by a considerable lattice deformation, since there is a large orbital contribution to the R magnetic moments, resulting in a strong coupling between the spin and lattice systems. It is therefore of interest to investigate the magnetoelastic properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Herbst: Rev. Mod. Phys. 63, 819 (1991)

    Article  ADS  Google Scholar 

  2. Y. Nakagawa, H. Kato, D. W. Lim, G. Kido and M. Yamada: Proc. 6th. Int. Symposium on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, ed. by S. G. Sanker, Pittsburgh, 25 October 1990 (Carnegie Mellon University, Pittsburgh, 1990) p. 12.

    Google Scholar 

  3. M. Yamada, H. Kato, H. Yamamoto and Y. Nakagawa: Phys. Rev. B 38, 620 (1988)

    Article  ADS  Google Scholar 

  4. D.W. Lim, H. Kato, M. Yamada, G. Kido and Y. Nakagawa: Phys. Rev. B 44, 10014 (1991)

    Article  ADS  Google Scholar 

  5. H. Kato, M. Yamada, G. Kido, Y. Nakagawa, T. Iriyama and K. Kobayashi: J. Appl. Phys. 73, 6931 (1993)

    Article  ADS  Google Scholar 

  6. E.F. Kneller and R. Hawig: IEEE Trans. Magn. 27, 3588 (1991)

    Article  ADS  Google Scholar 

  7. S. Hirosawa and M. Sagawa: Solid State Commun. 54, 335 (1985)

    Article  ADS  Google Scholar 

  8. R.T. Obermyer and F. Pourarian: J. Appl. Phys. 69, 5559 (1991)

    Article  ADS  Google Scholar 

  9. D.W. Lim, H. Kato, M. Yamada, G. Kido and Y. Nakagawa: J. Magn. Magn. Mater. 104–107, 1429 (1992)

    Article  Google Scholar 

  10. H. Kato, D.W. Lim, M. Yamada, Y. Nakagawa, H. Aruga Katori and T. Goto: Physica B 211, 105 (1995)

    Article  ADS  Google Scholar 

  11. H. Kato, T. Ishizaki, F. Sato and T. Miyazaki: J. Magn. Soc. Jpn. 23 495 (1999)

    Article  Google Scholar 

  12. S. Ishio and F. Sato: J. Magn. Soc. Jpn., 12, 259 (1988) (in Japanese)

    Article  Google Scholar 

  13. P.A. Algarabel, A. Del Moral, M.R. Ibara and C. Marquina: J. Magn. Magn. Mater. 114, 161 (1992)

    Article  ADS  Google Scholar 

  14. R. Skomski and J. M. D. Coey: Phys. Rev. B 48, 15812 (1993)

    Article  ADS  Google Scholar 

  15. M. Shindo, M. Ishizone, H. Kato, T. Miyazaki and A. Sakuma: J. Magn. Magn. Mater. 161, L1 (1996)

    Article  ADS  Google Scholar 

  16. M. Shindo, M. Ishizone, A. Sakuma, H. Kato and T. Miyazaki: J. Appl. Phys. 81, 4444 (1997)

    Article  ADS  Google Scholar 

  17. F.J. Cadieu, H. Hegde, A. Navarathna, R. Rani and K. Chen: Appl. Phys. Lett. 59, 875 (1991)

    Article  ADS  Google Scholar 

  18. H. Kato, T. Nomura, M. Ishizone, H. Kubota, T. Miyazaki and M. Motokawa: J. Appl. Phys. 87, 6125 (2000)

    Article  ADS  Google Scholar 

  19. F. Izumi: The Rietveld Method, ed. by R.A. Young (Oxford Univ. Press, Oxford, 1993) Chap. 13

    Google Scholar 

  20. B.-P. Hu, H.-S. Li, J.P. Gavigan and J.M.D. Coey: J. Phys. Condense. Matter 1, 755 (1989)

    Article  ADS  Google Scholar 

  21. T. Kaneko, M. Yamada, K. Ohashi, T. Tawara, R. Osugi, H. Yoshida, G. Kido and Y. Nakagawa: Proc. 10th Int. Workshop on Rare Earth Magnets and Their Applications, Kyoto, 16–19 May 1989 (The Society of Nontraditional Metallurgy, Tokyo 1989) p.191.

    Google Scholar 

  22. X.C. Kou, T.S. Zhao, R. Grössinger and H.R. Kirchmayr: Phys. Rev. B 47, 3231 (1993)

    Article  ADS  Google Scholar 

  23. M. Dahlgren, X.C. Kou, R. Grössinger, J.F. Liu, I. Ahmad, H.A. Davis and K. Yamada: IEEE Trans. Magn. 33, 2366 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kato, H., Miyazaki, T., Motokawa, M. (2002). High-Field Magnetization Process and Crystalline Electric Field Interaction in Rare-Earth Permanent-Magnet Materials. In: Watanabe, K., Motokawa, M. (eds) Materials Science in Static High Magnetic Fields. Advances in Materials Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56312-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56312-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62635-7

  • Online ISBN: 978-3-642-56312-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics