Skip to main content

Shuttle — Selected Missions and Payloads

  • Chapter
Observation of the Earth and Its Environment
  • 366 Accesses

Abstract

ASTRO-SPAS is the generic name of a reusable platform, designed and built by DASA (formerly MBB, Munich, Germany) under DLR contract, which is used as a self-contained and autonomous free-flyer service structure for special Shuttle payloads with free-flyer requirements for short-duration missions (up to the length of a Shuttle mission). The SPAS structure consists of low-weight, high-stiffness carbon fiber tubes with titanium nodes. Standardized mounting panels are provided for subsystem and payload equipment. The platform is deployed/retrieved by the Shuttle’s robot arm RMS (Remote Manipulator System) for a free-flyer mission which may entail separations from the Shuttle up to 100 km. As a service structure, SPAS is particularly suited as a test bed for new science instrumentation and technology demonstrations in space.1362)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Wattenbach, K. Moritz, “Astronomical Shuttle Pallet Satellite (ASTRO-SPAS),” Acta Astronautica, Vol. 40, No. 10, pp. 723–732, 1997

    Article  Google Scholar 

  2. I. Appenzeller, et al., “Medium-Resolution Far-Ultraviolet Spectroscopy of PKS 2155–304,” The Astrophysical Journal, 439: L33–L37, Feb. 1, 1995

    Article  Google Scholar 

  3. P. Barthol, K. U. Grossmann, D. Offermann, “Telescope design of the CRISTA/SPAS experiment aboard the Space Shuttle,” SPIE, Vol 1331, Stray Radiation in Optical Systems, 1990, pp. 54–63

    Article  Google Scholar 

  4. L. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Determination,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1047–1061

    Google Scholar 

  5. D. Offermann, et al., “Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability,” Journal of Geophysical Research, Vol. 104, No D13, July 20, 1999, pp. 16,311–16,325

    Google Scholar 

  6. R. R. Conway, M. H. Stevens, et al., “Middle Atmosphere High Resolution Spectrograph Investigation,” Journal of Geophysical Research, Vol. 104, No D13, July 20, 1999, pp. 16,327–16,348

    Article  Google Scholar 

  7. M. Cislaghi, U. Thomas, M. Lellouch, J. M. Pairot, “Development and Verification of Automated Rendezvous for ATV,” Proceedings IAF-96-T.2.08, Oct. 7–11, 1996, Beijing

    Google Scholar 

  8. M. Cislaghi, U. Thomas, M. Lellouch, G. Limouzin, “ATV — Pre-development Program — Flight Demonstrations,” IAF-97.T.2.03

    Google Scholar 

  9. Jack Kaye, “Summary of ATLAS Shuttle Missions,” Paper presented at the EOS-B Atmospheric Payload Panel Meeting Washington, D. C, Feb. 26–27, 1991

    Google Scholar 

  10. Information provided by the Earth Science Application Division (ESAD Office) at NASA HQ, Washington

    Google Scholar 

  11. SUSIM brochure of Naval Research Lab, available at NASA HQ’s Document Resource Facility

    Google Scholar 

  12. “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412

    Google Scholar 

  13. S. A. McDermott, D. J. Goldstein, “The Bitsy™ Spacecraft Kernel: Reducing Nanosatellite Mission Cost in the MSFC Future-X Program Through Miniaturized technologies,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-8

    Google Scholar 

  14. J. C. Kemp, et al., “Cryogenic Michelson Interferometer Spectrometer for Space Shuttle Application,” Proceedings of SPIE, Vol. 686, 1986, pp. 151–159. Application: Infrared Detectors, Sensors, and Focal Plane Arrays

    Article  Google Scholar 

  15. C. L. Wyatt, “CIRRIS-1A interferometer: radiometric analysis,” Applied Optics, Vol. 28, No. 23, Dec. 1, 1989, pp. 5069–5072

    Article  Google Scholar 

  16. G. E. Bingham, et al., “Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) Earth limb spectral measurements, calibration, and atmospheric O3, HNO3, CFC-12, and CFC-11 profile retrieval,” Journal of Geophysical Research, Vol. 102, D3, Feb. 20, 1997, pp. 3547–3558

    Article  Google Scholar 

  17. D. K. Zhou, et al., “Stratospheric CH4, N2O, H2O, NO2, N2O5, and ClONO2 profiles retrieved from Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1AVSTS-39 measurements,” Journal of Geophysical Research, Vol. 102, D3, Feb. 20, 1997, pp. 3559–3573

    Article  Google Scholar 

  18. ESA Press Release, ESA/ESTEC, 1991

    Google Scholar 

  19. P. Ferri, H. Hübner, S. Kellock, W. Wimmer, “The Joint ESA-NASA Operations for Eureca’s Deployment and Retrieval, “ESA Bulletin, Number 76, November 1993, pp. 81–90

    Google Scholar 

  20. F. Dreger, J. Fertig, D. Gawthrope, S. Martin, et. al., “Eureca: The Flight Dynamics of the Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 92–99

    Google Scholar 

  21. http://www.ksc.nasa.gov/shuttle/technology/sts-newsref/spacelab.html

  22. http://isir.gsfc.nasa.gov/main.html

  23. J. D. Spinhirne, et al., “Preliminary Spaceflight Results from the Uncooled Infrared Spectral Imaging Radiometer (ISIR) on Shuttle Mission STS-85,” SPIE, 1998

    Google Scholar 

  24. A. S. Levine (editor), “LDEF-69 Months in Space, First Post-Retrieval Symposium,” NASA Conference Publication 3134 (Part 1 and Part 2), Proceedings of a symposium sponsored by NASA at Kissimmee, Florida, June 2–8, 1991

    Google Scholar 

  25. W. Flury, “Europe’s Contribution to the Long Duration Exposure Facility (LDEF) Meteoroid and Debris Impact Analysis,” ESA Bulletin, Number 76, November 1993, pp. 112–118

    Google Scholar 

  26. B.B. Schardt, B.H. Mollberg, “The Orbiter Camera Payload System’s Large-Format Camera and Attitude Reference System,” in Monitoring the Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, pp. 684 – 709

    Google Scholar 

  27. “Lidar In-Space Technology Experiment (LITE): NASA’s first In-Space Lidar System for Atmospheric Research,” Optical Engineering, Jan. 1991, Vol. 30 No. 1 pp. 88–95

    Google Scholar 

  28. Information provided by V. Connors and D. O. Neil of NASA/LaRC

    Google Scholar 

  29. F. Ackermann, J. Bodechtel, F. Lanzl, D. Meissner, P. Seige, H. Winkenbach;”MOMS-02 — Ein multispektrales Stereo-Bildaufnahmesystem für die zweite deutsche Spacelab-Mission D2,” Geo-Informations-Systeme, Zeitschrift für interdisziplinären Austausch innerhalb der Geowissenschaften, Wichmann Verlag, Jahrgang 2, Heft 3/1989, S. 5 – 11

    Google Scholar 

  30. J. Bodechtel, D. Meißner, P. Seige, H. Winkenbach, J. Zilger, “The MOMS Experiment on STS-7 and STS-11-First Results and Further Development of the Modular Optoelectronic Multispectral Scanner,” Proceedings of the Eighteenth International Symposium on Remote Sensing of the Environment, Volume 1, 1984, pp. 77–85

    Google Scholar 

  31. “MOMS-01: First Results of STS-7 Mission,” IGARSS’83

    Google Scholar 

  32. J. Bodechtel, R. Haydn, J. Zilger, “MOMS-01: Missions and Results,” Monitoring Earth’s Ocean, Land, and Atmosphere form Space — Sensors, Systems, and Applications, edited by A. Schnapf, Progress in Astronautics and Aeronautics, AIAA, Vol. 97 1985, pp. 524–535

    Google Scholar 

  33. P. Seige, “MOMS-02 — Eine hochauflösende stereoskopische und multispektrale Kamera auf der zweiten deutschen Spacelab Mission D-2,” DLR-Nachrichten, Heft 77, Februar 1995

    Google Scholar 

  34. J. Bodechtel, S. Lutz, “Neue Wege der Erderkundung,” aus Einsichten, Forschung an der LMU, pp. 38–43, 1992

    Google Scholar 

  35. MBB Endbericht, “MOMS-02 auf D-2,” die Entwicklung von EOS über MOMS-EM, MOMS-01 bis MOMS-02, Doc. No. MOMS-02.RP.0100.0, Dec. 20, 1993

    Google Scholar 

  36. Courtesy of P. Seige, DLR

    Google Scholar 

  37. D. Caruso, “CONAE’s Satellite Missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 375–381

    Google Scholar 

  38. D. Caruso, “CONAE’s Satellite Missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 375–381

    Google Scholar 

  39. http://sspp.gsfc.nasa.gov/current.html

  40. Note: The technology of spatial heterodyne spectroscopy was developed by Fred Roesler and John Harlander of UWM in 1990. SHIMMER observations represent the first spaceborne demonstration of this technology.

    Google Scholar 

  41. Information provided by Robert R. Conway and Christoph R. Englert of NRL

    Google Scholar 

  42. http://uap-www.nrl.navy.mil/shimmer/shimmer.htm

  43. J. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, et al., “Field-Widened Spatial Heterodyne Spectroscopy: correcting for Optical Defects and New Vacuum Ultraviolet Performance Tests,” EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy V, SPIE Proceedings 1994, Vol. 2280, p. 310–319

    Google Scholar 

  44. SPARTAN Capabilities Statement, SP515, 1993, NASA/GSFC

    Google Scholar 

  45. http://spartans.gsfc.nasa.gov/

  46. F. H. Bauer, J. R. O’Donnell, “Space-Based GPS 1996 Mission Overview,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City MO, pp. 1293–1302

    Google Scholar 

  47. F. Bauer, E. Lightsey, et al., “Pre-Flight Testing of the SPARTAN GADACS Experiment,” Proceedings of ION GPS-94, Salt Lake City, pp. 1233–1241

    Google Scholar 

  48. J. Way, “Spaceborne Imaging Radar — From Remote Sensing Science to Earth Science Questions,” Launchspace Magazine, Volume 3.04, Aug/Sep 1998

    Google Scholar 

  49. Manual of Remote Sensing, Second Edition, American Society of Photogrammetry, 1983, pp. 1707–1710

    Google Scholar 

  50. H. v.d. Piepen, V. Amann, H. Helbig, HH. Kim, W. Hart, et al. “The Promise of Remote Sensing,” IEEE paper presented at IGARSS ‘82, June 1–4, Munich

    Google Scholar 

  51. “X-band Synthetic Aperture Radar (X-SAR) and its Shuttle-Borne Application for Experiments,” paper by Herwig Öttl and Francesco Valdoni

    Google Scholar 

  52. R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 33, No. 4, July 1995, pp. 829–839

    Google Scholar 

  53. Special Issue on SIR-C/X-SAR, IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, July 1995

    Google Scholar 

  54. R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 827–838

    Article  Google Scholar 

  55. F. V Stuhr, R. L. Jordan, M. U. Werner, “SIR-C/X-SAR A Multifaceted Radar,” IEEE Aerospace and Electronic Systems Magazine, Vol. 10, No. 10, Oct. 1995, pp. 15–25

    Article  Google Scholar 

  56. “Spacelab-1 Metric Camera, User Handbook and Data Catalogue,” compiled by M. Schroeder, E Suckfüll, G. Todd, and P. Lohmann of DLR, Oberpfaffenhofen, Dec. 1986

    Google Scholar 

  57. “Overview of ATMOS Results from Spacelab-3,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 64–66

    Google Scholar 

  58. S. D. Holland, “The NASA Electronic Still Camera System,” IEEE IGARSS ’92 Volume I, pp. 149–151

    Google Scholar 

  59. D. L. Amsbury, J. M. Bremer, “Recent Developments in Space Shuttle Remote Sensing, using hand-held Film Cameras,” IGARSS ’92, Volume I, pp. 152–154

    Google Scholar 

  60. S. G. Ackleson, D. E. Pitts, “Global Distribution of hand-held Photographs of Ocean and Coastal Regions Taken during Space Shuttle Missions, 1981–1991,” IEEE IGARSS ’92 Volume II, pp. 1550–1552

    Google Scholar 

  61. R. M. Nelson, K. J. Willis, W. J. Daley, E R. Brumbaugh, J. M. Bremer, “Cataloging and Indexing — The Development of the Space Shuttle Mission Data Base and Catalogs from Earth Observations hand-held Photography,” IEEE IGARSS ’92 Volume I, pp. 155–157

    Google Scholar 

  62. http://www.imax.com/

  63. http://www.shuttlepresskit.com/STS-88/payloadl9.htm

  64. Note: While the L-band radar/antenna is flown as part of the overall structure, there is no interferometric L-band capability due to the large antenna dimensions needed at the outboard location. The L-band radar is not being operated, however, some of its electronic capabilities are used for the C-RADAR.

    Google Scholar 

  65. M. U. Werner, “X-SAR/SRTM a Spaceborne Single Pass Interferometric SAR,” Joint workshop of ISPRS WG 1/1,1/3, and 1/4: Sensors and Mapping from Space, University of Hannover, Germany, Sept 29 — Oct. 2, 1997

    Google Scholar 

  66. SRTM Information Sheet of JPL

    Google Scholar 

  67. R. L. Jordan, E. R. Caro, Y. Kim, Y. Shen, F. V. Stuhr, M. U. Werner., “Shuttle Radar Topography Mapper,” Proceedings of the EUROPTO Conference: Symposium on Remote Sensing, Conference on Microwave Instrumentation for Remote Sensing of the Earth II, Taormina, Italy, Sept. 24–26, 1996

    Google Scholar 

  68. P. Chien, “Around the World in 11 Days,” Launchspace Magazine, Vol. 3.06, Dec. 1998

    Google Scholar 

  69. M. U. Werner, J. Heinstadt, “A Spaceborne X-band Single Pass Interferometric SAR Antenna System,” ESTEC Workshop on Large Antennas for Radio Astronomy, Noordwijk, NL, Feb. 28–29, 1996

    Google Scholar 

  70. K. B. Klein, M. U. Werner, “System Performance Monitoring for X-SAR/SRTM,” EUSAR’98, VDE-Verlag, May 25–27, 1998, Friedrichshafen, Germany, pp. 383–386

    Google Scholar 

  71. “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412

    Google Scholar 

  72. Information provided by E. Hilsenrath of NASA/GSFC, Greenbelt, MD

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Shuttle — Selected Missions and Payloads. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics