Skip to main content

Universal and Simultaneous Solution of Solid, Liquid and Gas in Cartesian-Grid-Based CIP Method

  • Conference paper
Mathematical Modeling and Numerical Simulation in Continuum Mechanics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 19))

  • 588 Accesses

Abstract

We present a review of the CIP method that is known as a general numerical solver for solid, liquid and gas. This method is a kind of semi-Lagrangean scheme and has been extended to treat incompressible flow in the framework of compressible fluid. Since it uses primitive Euler representation, it suits for multi-phase analysis. The recent version of this method guarantees the exact mass conservation even in the framework of semi-Lagrangean scheme. Comprehensive review is given for the strategy of the CIP method that has a compact support and subcell resolution including front capturing algorithm with functional transformation. Some practical applications are also reviewed such as milk crown or coronet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takewaki H, Nishiguchi, A, Yabe, T.: The cubic-interpolated pseudo-particle (CIP) method for solving hyperbolic-type equations, J. Comput. Phys. 61 (1985)261.

    Article  MathSciNet  MATH  Google Scholar 

  2. Takewaki H, Yabe, T.: The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations, J. Comput. Phys. 70 (1987)355.

    Article  MATH  Google Scholar 

  3. Yabe T, Takei, E.: A New Higher-Order Godunov Method for General Hyer-bolic Equations. J.Phys.Soc.Japan 57 (1988)2598.

    Article  MathSciNet  Google Scholar 

  4. T. Yabe and T. Aoki, A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver, Comput. Phys. Commun. 66, 219 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Yabe, T. Ishikawa, P. Y. Wang, T. Aoki, Y. Kadota, F. Ikeda, A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two-and three-dimensional solver, Comput. Phys. Commun. 66, 233 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. The special issue of the CIP method CFD Journal 8 (1999).

    Google Scholar 

  7. Yabe T, Xiao, F, Utsumi, T.: The Constrained Interpolation Profile (CIP) Method for Multi-Phase Analysis. J.Comput.Phys. (2001) in press.

    Google Scholar 

  8. Yabe T, Xiao, F.: Description of Complex and Sharp Interface during Shock Wave Interaction with Liquid Drop. J.Phys. Soc.Japan 62 (1993)2537.

    Article  Google Scholar 

  9. Yabe T, Wang, P.Y.: Unified Numerical Procedure for Compressible and Incompressible Fluid. J.Phys.Soc.Japan 60 (1991)2105.

    Article  Google Scholar 

  10. Tanaka R, Nakamura, T, Yabe, T.: Constructing exactly conservative scheme in non-conservative form. Comput. Phys. Commun. 126 (2000)232.

    Article  MathSciNet  MATH  Google Scholar 

  11. Unverdi S.O, Tryggvasson, G.A.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comp. Phys. 100 (1992)25.

    Article  MATH  Google Scholar 

  12. Osher S, Sethian, J.A.: Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79 (1988)12.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirt C.W, Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39 (1981)201.

    Article  MATH  Google Scholar 

  14. Youngs D.L.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods for Fluids Dynamics edited by K.W.Morton and M.J.Baines, (1982)273.

    Google Scholar 

  15. Yabe T, Xiao, F.: Description of complex and sharp interface with fixed grids in incompressible and compressible fluid. Computer Math. Applic. 29 (1995)15.

    MathSciNet  MATH  Google Scholar 

  16. Nakamura T, Yabe, T.: Cubic interpolation scheme for solving the hyper-dimensional Vlasov-Poisson Equation in phase space. Comput. Phys. Commun. 120 (1999)122.

    Article  MATH  Google Scholar 

  17. Yabe T, Tanaka,R., Nakamura, T, Xiao, F.: Exactly Conservative Semi-Lagrangian Scheme (CIP-CSL) in One-Dimension. Mon.Wea. Rev. 129 (2001) 332.

    Article  Google Scholar 

  18. Williamson D.L, Rasch,P.J.: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation. Mon. Wea. Rev. 117 (1989)102.

    Article  Google Scholar 

  19. Staniforth A., Côté, J.: Semi-Lagrangian integration scheme for atmospheric model-A review. Mon. Wea. Rev. 119 (1991)2206.

    Article  Google Scholar 

  20. Bermejo R., Staniforth, A.: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev. 120 (1992)2622.

    Article  Google Scholar 

  21. Kami S.: Multicomponent flow calculations by a consistent primitive algorithm. J.Comput.Phys. 112 (1994) 31.

    Article  MathSciNet  Google Scholar 

  22. Harlow F.H., Welch, J.E.: Numerical calculation of time dependent viscous incompressible flow with fee surface. Phys. Fluids 8 (1965) 2182.

    Article  MATH  Google Scholar 

  23. Amsden A.A, Harlow,F.H.: A Simplified MAC Technique for Incompressible Fluid Flow Calculations. J.Comp.Phys. 6 (1970)322.

    Article  MATH  Google Scholar 

  24. Patanker S.V, Spalding,D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15 (1972)1787.

    Article  Google Scholar 

  25. Patanker S.V.: Numerical heat transfer and fluid flow., Mcgraw-Hill, New York (1980).

    Google Scholar 

  26. Harlow F.H, Amsden, A.A.: Numerical simulation of almost incompressible flow. J.Comput.Phys. 3 (1968)80.

    Article  MATH  Google Scholar 

  27. Issa R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1985)40.

    Article  MathSciNet  Google Scholar 

  28. Zienkiewicz O.C, Wu, J.: A general explicit or semi-explicit algorithm for compressible and incompressibe flows. Int. J.Num. Meth. Eng. 35 (1992)457.

    Article  MathSciNet  MATH  Google Scholar 

  29. Karki K.C, Patankar, S.V.: Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA Journal 27 (1989)1167.

    Article  Google Scholar 

  30. Xiao F. et al: An Efficient Model for Driven Flow and Application to GCB. Comput. Model. & Sim. Eng. 1 (1996)235.

    Google Scholar 

  31. Yabe T., Zhang, Y., Xiao, F.: A Numerical Procedure-CIP-to Solve All Phases of Matter Together (Invited Lecture) Lecture Note in Physics pp.439–457 (Springer, 1998)

    Google Scholar 

  32. Zhang Y, Yabe, T.: Effect of ambient gas on three-dimensional breakup in coronet formation. CFD Journal 8 (1999)378.

    Google Scholar 

  33. Yabe T. et al.: Anomalous Crater Formation in Pulsed-Laser-Illuminated Aluminum Slab and Debris Distribution, Research Report NIFS (National Institute for Fusion Science) Series, NIFS-417, May (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yabe, T. (2002). Universal and Simultaneous Solution of Solid, Liquid and Gas in Cartesian-Grid-Based CIP Method. In: Babuška, I., Ciarlet, P.G., Miyoshi, T. (eds) Mathematical Modeling and Numerical Simulation in Continuum Mechanics. Lecture Notes in Computational Science and Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56288-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56288-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42399-7

  • Online ISBN: 978-3-642-56288-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics