Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 19))

  • 593 Accesses

Abstract

In the error analysis of finite element method, the inf-sup condition or the uniform lifting property plays an important role. In this paper, we discuss the relationship between the uniform inf-sup condition and the essential spectrum of the operator that appears in the problem. In general, one can not expect the convergence of the finite element approximation due to the spectral pollution that stems from the inappropriate mixing of the eigen-subspaces that correspond to two distinct components of the essential spectrum. As examples of our consideration, we treat the Stokes problem, mixed approximations of elliptic problems and a structural-acoustic coupling problem. In these problems, two distinct components might appear in the essential spectrum of the corresponding operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, I., Error-bounds for finite element method, Numer. Math., 16, 322–333 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179–192 (1973).

    Article  MATH  Google Scholar 

  3. Braess, D., Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics, Cambridge University Press, 1997.

    Google Scholar 

  4. Bramble, J.H. and Hilbert, S.R., Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16, 362–369 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8, 129–151 (1974).

    MathSciNet  MATH  Google Scholar 

  6. Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag (1991).

    Google Scholar 

  7. Ciarlet, P. G. and Lions, J.L., Handbook of Numerical Analysis, Vol II, Finite element methods, North Holland, 1991.

    Google Scholar 

  8. Deng, L. and Kako, T., Finite element approximation of eigenvalue problem for a coupled vibration between acoustic field and plate. J. Compu. Math., 15, no. 3, 265–278 (1997).

    MathSciNet  MATH  Google Scholar 

  9. Descloux, J., Nassif, N. and Rappaz, J., On spectral approximation. Part 1. The problem of convergence, RAIRO Anal. Numér., 12, 87–112 (1978).

    Google Scholar 

  10. Griffiths, D.F., Discrete eigenvalue problems, LBB constants and stabilization, Numerical Analysis 1995, D F Griffiths and G A Watson eds., 57–75 (1996).

    Google Scholar 

  11. Heikkola, E., Kusnetsov, Y. A., Neittaanmaki, P. and Toivanen J., Fictitious domain methods for the numerical solution of two-dimensional scattering problems, J. Comput. Phys., 145, pp. 89–109 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. Kako, T., Approximation of scattering state by means of the radiation boundary condition, Math. Meth. in the Appl. Sci., 3, pp. 506–515 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. Kako, T., MHD numerical simulation and numerical analysis, Journal of the Japan Society for Simulation Technology, Vol.12, 91–98 (1993) (in Japanese).

    Google Scholar 

  14. Kako, T., Remark on the relation between spectral pollution and inf-sup condition, G AKUT O International Series Math. Sci. and Appli., 11, Recent Developments in Domain Decomposition Methods and Flow Problems, 252–258 (1998).

    MathSciNet  Google Scholar 

  15. Kako, T. and Descloux, J., Spectral approximation for the linearized MHD operator in cylindrical region, Japan J. Indust. Appl. Math., Vol.8, 221–244 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. Kikuchi, F., Mathematical Foundation of Finite Element Method, Baifukan (1994) (in Japanese).

    Google Scholar 

  17. Kuznetsov, Yu. A. and Lipnikov, K. N. 3D Helmholtz wave equation by fictitious domain method, Russ. J. Numer. Anal. Math. Modeling, 13 No. 5, pp. 371–387 (1998).

    MATH  Google Scholar 

  18. Liu, X., Study on Approximation method for the Helmholtz equation in unbounded region, PhD. thesis, The University of Electro-Communications, Japan, 1999.

    Google Scholar 

  19. Liu, X. and Kako, T., Higher order radiation boundary condition and finite element method for scattering problem, Advances in Mathematical Sciences and Applications, 8, No. 2, pp. 801–819(1998).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kako, T., Nasir, H.M. (2002). Essential Spectrum and Mixed Type Finite Element Method. In: Babuška, I., Ciarlet, P.G., Miyoshi, T. (eds) Mathematical Modeling and Numerical Simulation in Continuum Mechanics. Lecture Notes in Computational Science and Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56288-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56288-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42399-7

  • Online ISBN: 978-3-642-56288-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics