Skip to main content

Molecular Cell Biology: Mechanisms and Regulation of Protein Import into the Plant Cell Nucleus

  • Chapter
  • 430 Accesses

Part of the book series: Progress in Botany ((BOTANY,volume 63))

Abstract

Plant cells contain three genetically active compartments embedded in the cytoplasm which are acting in strictly regulated cooperation (Sitte 1998). Translation of proteins from organelle-encoded genes occurs in the respective semiautonomous plastid or mitochondrial compartments (stroma and matrix, respectively). Nuclear-encoded genes are transcribed in the cell nucleus, and posttranscriptionally modified mRNA, tRNA and preformed ribosomes are transported to the cytoplasm. The nuclear mRNA is translated into polypeptides either directly at free cytoplasmic ribosomes or at ribosomes associated with the rough endoplasmic reticulum (ER). Proteins necessary for the correct functioning of the cell have to be transported to the respective locations. Characteristic signal- or transit-peptides at the N-terminus of specific proteins mediate the correct transport to the plasma membrane or into the chloroplasts and mitochondria; other characteristic short motifs were found in proteins targeted to the vacuole, peroxisomes or into the cell nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach RA, Gruissem W (1994) A small GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 91:5863–5867

    Article  PubMed  CAS  Google Scholar 

  • Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 11:807–816

    Article  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1:939–948

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Barth AL, Nathke IS, Nelson WJ (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9:683–690

    Article  PubMed  CAS  Google Scholar 

  • Becker SJC, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23

    Article  PubMed  CAS  Google Scholar 

  • Bonas U (2000) High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv. vesicatora AvrBs3 protein. Theor Appl Genet 101:255–263

    Article  Google Scholar 

  • Bonas U, Van den Ackerveken G, Büttner D, Hahn K, Marois E, Nennstiel D, Noël L, Rossier O, Szurek B (2000) How the bacterial plant pathogen Xanthomonas campestris pv. vesicatora conquers the host. Mol Plant Pathol 1:73–76

    Article  PubMed  CAS  Google Scholar 

  • Borg S, Brandstrup B, Jenson TJ, Poulsen C (1997) Identification of new protein species amount 33 different small GTP-binding proteins encoded by cDNAs from Lotus ja-ponicus t and expression of corresponding mRNAs in developing root nodules. Plant J 11:237–250

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  PubMed  CAS  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase2. Nature 401:610–613

    Article  PubMed  CAS  Google Scholar 

  • Chytilova E, Macas J, Siwilinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    PubMed  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    Article  PubMed  CAS  Google Scholar 

  • Dabauvalle MC, Benevente R, Chaly N (1988) Monoclonal antibodies to a Mr 68,000 pore complex glycoprotein interfere with nuclear protein uptake in Xenopus oocytes. Chromsoma 97:193–197

    Article  CAS  Google Scholar 

  • Davis LI (1995) The nuclear pore complex. Annu Rev Biochem 64:865–896

    Article  PubMed  CAS  Google Scholar 

  • Deng XW, Quail PH (1992) Genetic and phenotypic characterization of copl mutants of Arabidopsis thaliana. Plant J 2:83–95

    Article  CAS  Google Scholar 

  • Deng XW, Dubiel W, Wei N, Hofmann K, Mundt K, Colicelli J, Kato J, Naumann M, Segal D, Seeger M, Glickman M Chamovitz DA, Carr A (2000) Unified nomenclature for COP9 signalosome an its subunits: an essential regulator of development. Trends Genet 16:202–203

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Meyerowitz E (2000) COP1 patrols the night beat. Nat Cell Biol 2:E102-E104

    Article  PubMed  CAS  Google Scholar 

  • Diener TO (1995) Viroids and the nature of viroid diseases. Arch Virol Suppl 15:203–220

    Google Scholar 

  • Diener TO (1999) Origin and evolution of viroids and viroid- like satellite RNAs. Virus Genes 11:119–131

    Article  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences-a consensus? Trends Biochem Sci 16:478–481

    Article  PubMed  CAS  Google Scholar 

  • Doye V, Hurt EC (1997) From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9:401 411

    Google Scholar 

  • Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284:1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:448–445

    Article  Google Scholar 

  • Forbes DJ (1992) Structure and function of the nuclear pore complex. Annu Rev Cell Biol 8:495–527

    Article  PubMed  CAS  Google Scholar 

  • Foster R, Izawa T, Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    PubMed  CAS  Google Scholar 

  • Furuya M, Schäfer E (1996) Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci 1:301–307

    Google Scholar 

  • Furuya M, Song PS (1994) Assembly and properties of holophytochrome. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 105–134

    Google Scholar 

  • Garcia-Bustos J, Heitman J, Hall MN (1991) Nuclear protein localization. Biochem Biophys Acta 1071:83–101

    PubMed  CAS  Google Scholar 

  • Gil P, Kircher S, Adam E, Bury E, Kozma-Bognar L, Schäfer E, Nagy F (2000) Photocon- trol of subcellular partitioning of phytochrome-B: GFP fusion protein in tobacco seedlings. Plant J 22:135–145

    Article  PubMed  CAS  Google Scholar 

  • Goday A, Jensen AB, Culianez-Marcia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in thenucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    PubMed  CAS  Google Scholar 

  • Görlich D (1998) Transport into and out of the cell nucleus. EMBO J 17:2721–2727

    Article  PubMed  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  Google Scholar 

  • Görlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767–778

    Article  PubMed  Google Scholar 

  • Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehne S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5:383–392

    Article  PubMed  Google Scholar 

  • Görlich D, Pante N, Kutay U, Aebi U, Bischoff F R (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15:5584–5594

    PubMed  Google Scholar 

  • Goldberg MW, Cronshaw JM, Kiseleva E, Allen TD (1999) Nuclear-pore-complex dynamics and transport in higher eukaryotes. Protoplasma 209:144–156

    Article  CAS  Google Scholar 

  • Guo H, Duong H, Ma N, Lin C (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J 19:279–287

    Article  PubMed  CAS  Google Scholar 

  • Guralnick B, Thomsen G, Citovsky V (1996) Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8:363–373

    PubMed  CAS  Google Scholar 

  • Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11:93–103

    Article  PubMed  CAS  Google Scholar 

  • Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schäfer E (1994) Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6:545–559

    PubMed  CAS  Google Scholar 

  • Heese-Peck A, Raikhel NV (1998a) The nuclear pore complex. Plant Mol Biol 38:145–162

    Article  PubMed  CAS  Google Scholar 

  • Heese-Peck A, Raikhel NV (1998b) A glycoprotein modified with terminal N-acetylgluco-samine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases. Plant Cell 10:599–612.

    PubMed  CAS  Google Scholar 

  • Heese-Peck A, Cole RN, Borhsenious ON, Hart GW, Raikhel NV (1995) Nuclear pore complex proteins from higher plants are modified by novel O-linked oligosaccharides. Plant Cell 7:1459–1471

    PubMed  CAS  Google Scholar 

  • Hicks GR, Raikhel NV (1995a) Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci USA 92:734–738

    Article  PubMed  CAS  Google Scholar 

  • Hicks GR, Raikhel NV (1995b) Protein import into the nucleus: an integrated view. Annu Rev Cell Biol 11:155–188

    Article  CAS  Google Scholar 

  • Hicks, GR, Smith HMS, Shieh M, Raikhel NV (1995) Three classes of nuclear import signals bind to plant nuclei. Plant Physiol 107:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Hicks GR, Smith HMS, Lobreaux S, Raikhel NV (1996) Nuclear import in permeabilised protoplasts from higher plants has unique features. Plant Cell 8:1337–1352

    PubMed  CAS  Google Scholar 

  • Holm M, Deng XW (1999) Structural organization and interactions of COP1, a light-regulated developmental switch. Plant Mol Biol 41:151–158

    Article  PubMed  CAS  Google Scholar 

  • Hübner S, Smith HMS, Hu W, Chan CK, Rihs HP, Paschal BM, Raihkel NV, Jans DA (1999) Plant importin a binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin ß. J Biol Chem 274:22610–22617

    Article  PubMed  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    Article  PubMed  CAS  Google Scholar 

  • Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nupll6p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131:1699–1713

    Article  PubMed  CAS  Google Scholar 

  • Jensen AB, Goday A, Figueras M, Jessop AC, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697

    Article  PubMed  CAS  Google Scholar 

  • Jiang CJ, Imamoto N, Matsuki R, Yoneda Y, Yamamoto N (1998a) Functional characterization of a plant importin a homologue — nuclear localization signal (NLS)-selective binding and mediation of nuclear import of NLS proteins in vitro. J Biol Chem 272:24083–24087

    Article  Google Scholar 

  • Jiang CJ, Imamoto N, Matsuki R, Yoneda Y, Yamamoto N (1998b) In vitro characterization of rice importin beta 1: molecular interaction with nuclear transport factors and mediation of nuclear protein import. FEBS Lett 437:127–130

    Article  PubMed  CAS  Google Scholar 

  • Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in plants. Kluwer, Dordrecht

    Google Scholar 

  • Kim L, Kircher S, Toth R, Adam E, Schäfer E, Nagy F (2000) Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J 22:125–133

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Ledger S, Hayashi H, Weisshaar B, Schäfer E, Frohnmeyer H (1998) CPRF4a, a novel plant bZIP protein of the CPRF family: comparative analyses of light-dependent expression, post-transcriptional regulation, nuclear import and heterodimerisation. Mol Gen Genet 257:595–605

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999a) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    PubMed  CAS  Google Scholar 

  • Kircher S, Wellmer F, Nick P, Rügner A, Schäfer E, Harter K (1999b) Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J Cell Biol 144:201–211

    Article  PubMed  CAS  Google Scholar 

  • Kleiner O, Kircher S, Harter K, Batschauer A (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J 19:289–296

    Article  PubMed  CAS  Google Scholar 

  • Klimczak LJ, Schindler U, Cashmore AR (1992) DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by caScin kinase II from broccoli. Plant Cell 4:87–98

    PubMed  CAS  Google Scholar 

  • Klimczak LJ, Collinge MA, Farini D, Giuliano G, Walker JC, Cashmore AR (1995) Re-constitution of Arabidopsis caScin kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    PubMed  CAS  Google Scholar 

  • Knorpp C, Hugosson M, Sijoling S, Eriksson AC, Glaser E (1994) Tissue-specific differences of the mitochondrial protein import machinery: in vitro import, processing and degradation of the pre-fb subunit of the ATPase in spinach leaves and root mitochondria. Plant Mol Biol 26:571–579

    Article  PubMed  CAS  Google Scholar 

  • Kozma-Bognar L, Hall A, Adam E, Thain SC, Nagy F, Millar AJ (1999) The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc Natl Acad Sci USA 96:14652–14657

    Article  Google Scholar 

  • Kunik T, Palanichelvam K, Czosnek H, Citovsky V, Gafni Y (1998) Nuclear import of the capsid protein of tomato yellow leaf curly virus (TYLCV) in plant and insect cells. Plant J 13:393–399

    Google Scholar 

  • Kwok SF, Piekos B, Misera S, Deng XW (1995) A complement often essential and plei-otropic Arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol 110:731–742

    Article  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA-binding proteins. Science 240:1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Lasarowitz SG (1988) Infectivity and complete nucleotide sequence of the genome of a South African isolate of maize streak virus. Nucleic Acids Res 16:229–249

    Article  Google Scholar 

  • Lasarowitz SG, Pinder AJ, Damsteegt VD, Rogers SG (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J 8:1023–1032

    Google Scholar 

  • Leheny EA, Theg SM (1994) Apparent inhibition of chloroplast protein import by cold temperature is due to energetic considerations, not to membrane fluidity. Plant Cell 6:427–437

    PubMed  CAS  Google Scholar 

  • Ligterink W, Kroj T, zur Nieden U, Hirt H (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054–2057

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Thomas CL, Prior DAM, Oparka KJ, Davies JW (1999) Maize streak virus coat protein is karyophilic and facilitates nuclear transport of viral DNA. Mol Plant-Microbe Interact 12:894–900

    Article  PubMed  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  • Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202:117–125

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863

    Article  PubMed  CAS  Google Scholar 

  • Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ 20:666–671

    Article  CAS  Google Scholar 

  • Matsui M, Stoop CD, von Arnim AG, Arnim N, Deng XW (1995) Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proc Natl Acad Sci USA 92:4239–4243

    Article  PubMed  CAS  Google Scholar 

  • Mattaj IW, Engelmeier L (1998) Nucleoplasms transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  • McGonigle B, Bouhidel K, Irish VF (1996) Nuclear localization of the Arabidopsis APATALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812–1821

    Article  PubMed  CAS  Google Scholar 

  • McNellis TW, von Arnim AG, Araki T, Komeda Y, Misera S, Deng XW (1994) Genetic and molecular analysis of an allelic series of cop 1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500

    PubMed  CAS  Google Scholar 

  • Melchior F, Paschal B, Evans E, Gerace L (1993) Inhibition of nuclear protein import by nonhydrolyzable analogs of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 135:1457–1470

    Google Scholar 

  • Merkle T, Nagy F (1997) Nuclear import of proteins: putative import factors and development of in vitro import systems in higher plants. Trends Plant Sci 2:458–464

    Article  Google Scholar 

  • Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F (1994) Phenotype of the fission yeast cell cycle regulatory mutant pirn 1–46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 6:555–565

    Article  PubMed  CAS  Google Scholar 

  • Merkle T, Leclerc D, Marshallsay C, Nagy F (1996) A plant in vitro system for nuclear import of proteins. Plant J 10:1177–1186

    Article  PubMed  Google Scholar 

  • Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol 36:1405–1420

    PubMed  CAS  Google Scholar 

  • Misera S, Müller AJ, Weiland-Heidecker U, Jürgens G (1994) The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet 244:242–252

    Article  PubMed  CAS  Google Scholar 

  • Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:143–148

    Article  Google Scholar 

  • Mudgett MB, Chesnokova O, Dahlbeck D, Clark E, Bonas U, Staskawicz BJ (2000) Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci USA 97:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A (2000) Lighting up the nucleus. Science 288:821–822

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Schäfer E (1999) Phytochromes, pif3 and light signaling go nuclear. Trends Plant Sci 4:125–126

    Article  CAS  Google Scholar 

  • Nagy F, Schäfer E (2000) Nuclear and cytosolic events of light-induced, phytochrome-regulated signalling in higher plants. EMBO J 19:157–163

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nemeth K, Salcher K, Putnoky P, Bhalerao R, Koncz-Kalman Z, Stankovic-Stangeland B, Bako L, Mathur J, ökresz L, Stabel S, Geigenberger P, Stitt M, Redei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12:3059–3073

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1997) Nucleoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD (1997) Heat stress proteins and transcription factors. Cell Mol Life Sci 53:80–103

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Tanaka N, Yabe N, Komatsu S, Hasunuma K (1999) Characterization of protein complexes containing nucleoside diphosphate kinase with characteristics of light signal transduction through phytochrome in etiolated pea seedlings. Photochem Photobiol 69:397–403

    Article  CAS  Google Scholar 

  • Osterlund MT, Deng XW (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16:201–208

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lasarowitz SG (1994) The geminivirus BRI movement protein binds single- and double-stranded DNA and localizes to the nucleus. Plant Cell 6:995–1006

    PubMed  CAS  Google Scholar 

  • Peracchia G, Jensen AB, Culianez-Macia FA, Grosset J, Goday A, Issinger OG, Pages M (1999) Characterization, subcellular localization and nuclear targeting of caScin kinase 2 from Zea mays. Plant Mol Biol 40:199–211

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Ward BM, Lazarowitz, SG (1998) The bipartite geminivirus coat protein aids BRI function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol 72:9247–9256

    PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  • Radu A, Blobel G, Moore MS (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of the import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92:1769–1773

    Article  PubMed  CAS  Google Scholar 

  • Reichelt R, Holzenburg A, Buhle EL, Jarnik M, Engel A, Aebi U (1990) Correlation between structure and mass distribution of the nuclear pore complex, and distinct pore complex components. J Cell Biol 110:883–894

    Article  PubMed  CAS  Google Scholar 

  • Relic B, Andjelkovic M, Rossi L, Nagamine Y, Hohn B (1998) Interaction of the DNA modifying proteins VirDl and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 95:9105–9110

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123:771–783

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Wente SR (1994) Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4:357–365

    Article  PubMed  CAS  Google Scholar 

  • Saalbach G, Christov V (1994) Sequence of a plant cDNA from Vicia faba encoding a novel Ran-related GTP-binding protein. Plant Mol Biol 24:969–972

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–868

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Ingham DJ, Lazarowitz SG (1996) A viral movement protein as a nuclear shuttle. Plant Physiol 110:23–33

    Article  PubMed  CAS  Google Scholar 

  • Schäfer E, Marchai B, Marme D (1972) In vivo measurements of phytochrome photostationary state in far-red light. Photochem Photobiol 15:457–464

    Article  Google Scholar 

  • Scharf KD, Materna T, Treuter E, Nover L (1994) Heat stress promoters and transcription factors. In: Nover L (ed) Plant promoters and transcription factors. Springer, Berlin Heidelberg New York, pp 125–162

    Google Scholar 

  • Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with Hsf Al for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251

    PubMed  CAS  Google Scholar 

  • Schledz M, Leclerc D, Neuhaus G, Merkle T (1998) Characterization of four cDNAs encoding different importin alpha homologs from Arabidopsis. Plant Physiol 116:868

    Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguschi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes Company, Austin, TX, pp 81–98

    Google Scholar 

  • Scofield GN, Beven AF, Shaw PJ, Doonan JH (1992) Identification and localization of a nucleoporin-like protein component of the plant nuclear matrix. Planta 187:414–420

    Article  CAS  Google Scholar 

  • Sheldon LA, Kingston RE (1993) Hydrophobic coiled-coil domains regulate the subcellular localization of the human heat shock factor 2. Genes Dev 7:1549–1558

    Article  PubMed  CAS  Google Scholar 

  • Shieh MW, Wessler SR, Raikhel NV (1993) Nuclear targeting of the maize R protein requires two nuclear localization sequences. Plant Physiol 101:353–361

    Article  PubMed  CAS  Google Scholar 

  • Shoji K, Iwasaki T, Matsuki R, Miyao M, Yamamoto N (1998) Cloning of a cDNA encoding an importin a and down-regulation of the gene by light in rice leaves. Gene 212:279–286

    Article  PubMed  CAS  Google Scholar 

  • Sitte P (1998) Facts and concepts in cell compartmentation. Prog Bot 59:3–45

    Article  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Raikhel NV (1998) Nuclear localization signal receptor importin a associates with the cytoskeleton. Plant Cell 10:1791–1799

    PubMed  CAS  Google Scholar 

  • Smith HMS, Raikhel NV (1999) Protein targeting to the nuclear pore. What can we learn from plants? Plant Physiol 119:1157–1163.

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Hicks GR, Raikhel NV (1997) Importin a from Arabidopsis thaliana is a nuclear import receptor that recognises three classes of import signals. Plant Physiol 114:411–417

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Devil PF, Kay SA (1998) Phytochromes and cryptochromes in the entrain-ment of the Arabidopsis circadian clock. Science 282:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Stacey MG, von Arnim AG (1999) A novel motive mediates the targeting of the Arabidopsis COP1 protein to subnuclear foci. J Biol Chem 274:27231–27236

    Article  PubMed  CAS  Google Scholar 

  • Stacey MG, Hicks SN, von Arnim AG (1999) Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1. Plant Cell 11:349–363

    PubMed  CAS  Google Scholar 

  • Stacey MG, Kopp OR, Kim TH, von Arnim AG (2000) Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in plants. Plant Physiol 124:979–989

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995a) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995b) Seeing the light in plant development. Curr Biol 5:466–468

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi WB, Bertekap RL, Cashmore AR (1997) Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant J 11:967–982

    Article  PubMed  CAS  Google Scholar 

  • Unseld S, Höhnle M, Ringel M, Frischmuth T (2001) Subcellular targeting of the coat protein of African cassava mosaic geminivirus. Virology (in press)

    Google Scholar 

  • Van den Ackerveken G, Marois E, Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:1307–1316

    Article  PubMed  Google Scholar 

  • Van der Krol AR, Chua NH (1991) The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 3:667–675

    PubMed  Google Scholar 

  • Varagona MJ, Raikhel NV (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J 5:207–214

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1991) Monocot regulatory protein Opaque-2 is localized in the nucleus of maize endosperm and transformed tobacco plants. Plant Cell 3:105–113

    PubMed  CAS  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227

    PubMed  CAS  Google Scholar 

  • Von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045

    Article  Google Scholar 

  • Von Arnim AG, Osterlund MT, Kwok SF, Deng XW (1997) Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114:779–788

    Article  Google Scholar 

  • Wang HY, Kang DM, Deng XW, Wei N (1999) Evidence for functional conservation of a mammalian homologue at the light-responsive plant protein COP1. Curr Biol 9:711–714

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar B, Armstrong GA, Block A, Silva O, Hahlbrock K (1991) Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J 10:1777–1786

    PubMed  CAS  Google Scholar 

  • Wellmer F, Kircher S, Rügner A, Frohnmeyer H, Schäfer E, Harter K (1999) Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light. J Biol Chem 274:29476–29482

    Article  PubMed  CAS  Google Scholar 

  • Wengelnik K, Bonas U (1996) HrpXv, an AraC-type regulator, activates expression of five out of six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol 178:3462–3469

    PubMed  CAS  Google Scholar 

  • Wengelnik K, Van den Ackerveken, Bonas U (1996) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant-Microbe Interact 9:704–712

    Article  PubMed  CAS  Google Scholar 

  • Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 181:6828–6831

    PubMed  CAS  Google Scholar 

  • White FF, Yang B, Johnson LB (2000) Prospects for understanding avirulence gene function. Curr Opin Plant Biol 3:291–298

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Halliday KJ (1999) Photomorphogenesis: phytochrome takes a partner! Curr Biol 9:R225–R227

    Article  PubMed  CAS  Google Scholar 

  • Woo Y-M, Itaya A, Owens RA, Tang L, Hammond R, Chou H-C, Lai MMC, Ding B (1999) Characterization of nuclear import of potato spindle tuber viroid RNA in permeabi-lized protoplasts. Plant J 17:627–635

    Article  CAS  Google Scholar 

  • Wright EA, Heckel T, Groenendijk J, Davies JW, Boulton MI (1997) Splicing features in maize streak virus virion- and complementary-sense gene expression. Plant J 12:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–445

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Zhu W, Johnson LB, White FF (2000) The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc Natl Acad Sci USA 97:9807–9812

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Hemleben V (1996): Molecular cell biology: signal transduction in plants. Prog Bot 57:218–234

    CAS  Google Scholar 

  • Zentgraf U, Velasco R, Hemleben V (1998) Molecular cell biology: different transcriptional activities in the nucleus. Prog Bot 59:131–168

    Article  CAS  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insight. Plant J 23:11–28

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Citovsky V, Zambryski P (1996) Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 93:2392–2397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hemleben, V., Hinderhofer, K., Zentgraf, U. (2002). Molecular Cell Biology: Mechanisms and Regulation of Protein Import into the Plant Cell Nucleus. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56276-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56276-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52304-5

  • Online ISBN: 978-3-642-56276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics