Advertisement

Function of Genetic Material: Genes Involved in Quantitative and Qualitative Resistance

  • Thomas Lübberstedt
  • Volker Mohler
  • G. Wenzel
Chapter
Part of the Progress in Botany book series (BOTANY, volume 63)

Abstract

A higher plant contains a minimum of 20,000 genes (Kaul et al. 2000). A successful new variety — the end product of the function of genetic material — is never the result of the addition of just one gene but rather a better combination of several genes. Thus, the challenge in plant breeding is the optimal combination of many genes. Good luck and the “green thumb” of the breeder, are still important prerequisites for successful plant breeding. The question is whether increased knowledge of the function of genetic material will help in offering reliable tools for optimal combinations of the [(n+1) · n]k alleles (n=number of alleles per k loci) in a better genome (Rommens and Kishore 2000).

Keywords

Quantitative Trait Locus Powdery Mildew Quantitative Trait Locus Analysis Quantitative Trait Locus Mapping Fusarium Head Blight Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrama HA, Moussa ME, Naser ME, Tarek MA, Ibrahim AH (1999) Mapping of QTL for downy mildew resistance in maize. Theor Appl Genet 99:519–523PubMedCrossRefGoogle Scholar
  2. Agrios GN (1997) Plant pathology, 4th edn. Academic Press, San DiegoGoogle Scholar
  3. Ayliffe MA, Collins NC, Ellis JG, Pryor A (2000) The maize rpl rust resistance gene identifies homologues in barley that have been subjected to diversifying selection. Theor Appl Genet 100:1144–1154CrossRefGoogle Scholar
  4. Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302CrossRefGoogle Scholar
  5. Backes G, Schwarz G, Wenzel G, Jahoor A (1996) Comparison between QTL analysis of powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed 115:419–421CrossRefGoogle Scholar
  6. Bennett MD, Smith LB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274PubMedCrossRefGoogle Scholar
  7. Bohn MO, Schulz B, Kreps R, Klein D, Melchinger AE (2000) QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet 101:907–917CrossRefGoogle Scholar
  8. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  9. Buerstmayr H, Lemmens M, Fedak G, Ruckenbauer P (1999) Back-cross reciprocal monosomic analysis of Fusarium head blight resistance in wheat (Triticum aestivum L.). Theor Appl Genet 98:76–85CrossRefGoogle Scholar
  10. Chen FQ, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219Google Scholar
  11. Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295CrossRefGoogle Scholar
  12. Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355CrossRefGoogle Scholar
  13. Collins N, Drake J, Ayliffe M, Sun Q, Ellis JG, Hulbert SH, Pryor AJ (1999) Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376PubMedGoogle Scholar
  14. Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor T (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11:968–978PubMedCrossRefGoogle Scholar
  15. Dangl JL, Holub EB (1997) La Dolce Vita: a molecular feast in plant-pathogen interactions. Cell 91:17–24PubMedCrossRefGoogle Scholar
  16. Dehmer K, Graner A, Wenzel G (1991) Screening for defined DNA sequences in minimal amounts of barley tissue by PCR. Plant Breed 107:70–72CrossRefGoogle Scholar
  17. De la Pena RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Macky R, Somers DA, Rasmusson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569PubMedCrossRefGoogle Scholar
  18. Dingerdissen AL, Geiger HH, Lee M, Schechert A, Welz HG (1996) Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of Northern leaf blight, in a tropical environment. Mol Breed 2:143–156CrossRefGoogle Scholar
  19. El Attari H, Rebai A, Hayes PM, Barrault G, Dechamp-Guillaume G, Sarrafi A (1998) Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theor Appl Genet 96:95–100CrossRefGoogle Scholar
  20. Ellerbrook CM, Korzun V, Worland AJ (1999) Using precise genetic stocks to investigate the control of Stagonospora nodorum resistance in wheat. In: van Ginkel M, McNab A, Krupinsky J (eds) Septoria and Stagonospora diseases of cereals: a compilation of global research. Procs 5th Int Septoria Worksh Mexico, DF, Mexico, pp 150–153Google Scholar
  21. Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270PubMedCrossRefGoogle Scholar
  22. Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the LrlO disease resistance locus of wheat. Plant J 11:45–52PubMedCrossRefGoogle Scholar
  23. Flavell R. (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31:569–596CrossRefGoogle Scholar
  24. Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bachner A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of chemical defense mechanism in grasses. Science 277:696–699PubMedCrossRefGoogle Scholar
  25. Freymark PJ, Lee M, Woodman WL, Martinson CA (1993) Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcicum in maize (Zea mays L.). Theor Appl Genet 87:537–544CrossRefGoogle Scholar
  26. Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341CrossRefGoogle Scholar
  27. Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330CrossRefGoogle Scholar
  28. Gentzbittel L, Mouzeyar S, Badaouis, Mestries E, Vear F, Tourvieille D, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet 96:519–525CrossRefGoogle Scholar
  29. Graham MA, Marek LF, Lohnes D, Cregan P, Shoemaker RC (2000) Expression and genome organization of resistance gene analogs in soybean. Genome 43:86–93PubMedCrossRefGoogle Scholar
  30. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846PubMedCrossRefGoogle Scholar
  31. Grausgruber H, Buerstmayr H, Lemmens M, Ruckenbauer P (1998) Chromosomal location of Fusarium head blight resistance and in vitro toxin tolerance in wheat using the Hobbit “sib” (Triticum macha) chromosome substitution lines [Triticum aestivum L.]. J Genet Breed 52:173–180Google Scholar
  32. Haley C (1999) Advances in Quantitative trait locus mapping, http://agbio.cabweb.org Google Scholar
  33. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedCrossRefGoogle Scholar
  34. Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked in the powdery mildew resistance gene Pmlc and Pm4a in common wheat (Triticum aestivum L.) Genome 42:322–329Google Scholar
  35. Hayes P, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B, St Pierre CA, Chen F (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. J Agric Genomics (http://www.ncgr.org/research/jag/papers96/paper296/jqtl22.html)Google Scholar
  36. Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35:1019–1025CrossRefGoogle Scholar
  37. Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414CrossRefGoogle Scholar
  38. Jansen RC (1996) Complex plant traits: time for polygenic analysis. Trends Plant Sci 1:89–94CrossRefGoogle Scholar
  39. Jansen RC, Stam P (1994) High resolution mapping of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  40. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1117PubMedGoogle Scholar
  41. Jones JDG (1996) Plant disease resistance genes: structure function and evolution. Curr Opin Biotechnol 7:155–160CrossRefGoogle Scholar
  42. Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750PubMedCrossRefGoogle Scholar
  43. Kaul S, Koo HL, Jenkins J et al. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  44. Kerns MR, Dudley JW, Rufener III GK (1999) QTL for resistance to common rust and smut in maize. Maydica 44:37–45Google Scholar
  45. Kicherer S, Backes G, Walther U, Jahoor A (2000) Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet 100:881–888CrossRefGoogle Scholar
  46. Kleinhofs A, Kudrna D, Matthews D (1998) Integrating barley molecular and morphological/physiological marker maps. Barley Genet Newsl 28:89–91Google Scholar
  47. Koorneef M, Stam P (1992) Genetic analysis. In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific Publ, River Edge, MN, pp 83–99Google Scholar
  48. Korol A (2001) MultiQTL. http://www.incubators.org.il/26020.htm
  49. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  50. Leister D, Ballvora A, Salamini F, Gebhardt CA (1996) PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429PubMedCrossRefGoogle Scholar
  51. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375PubMedCrossRefGoogle Scholar
  52. Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS (1999) A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet 261:58–63PubMedCrossRefGoogle Scholar
  53. Lu XW, Brewbaker JL, Nourse SM, Moon HG, Kim SK, Khairallah M (1999) Mapping of quantitative trait loci conferring resistance to maize streak virus. Maydica 44:313–318Google Scholar
  54. Lübberstedt T, Klein D, Melchinger AE (1998a) Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize. Phytopathology 88:1324–1329PubMedCrossRefGoogle Scholar
  55. Lübberstedt T, Klein D, Melchinger AE (1998b) Comparative QTL mapping of resistance to Ustilago maydis across four populations of European flint maize. Theor Appl Genet 97:1321–1330CrossRefGoogle Scholar
  56. Lübberstedt T, Xia XC, Tan G, Liu X, Melchinger AE (1999) QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet 99:593–598PubMedCrossRefGoogle Scholar
  57. Lübberstedt T, Melchinger AE, Dußle C, Vuylsteke M, Kuiper M (2000) Relationships among early European maize inbreds, IV. Genetic diversity revealed with AFLP and comparison with RFLP, RAPD, and pedigree data. Crop Sci 40:783–791CrossRefGoogle Scholar
  58. Ma Z, Steffenson BJ, Prom LK, Lapitan NLV (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088PubMedCrossRefGoogle Scholar
  59. Marcon A, Kaeppler SM, Jensen SG, Senior L, Stuber C (1999) Loci controlling resistance to high plains virus and wheat streak mosaic virus in a B73 x Mo 17 population of maize. Crop Sci 39:1171–1177CrossRefGoogle Scholar
  60. Martin GB, Brommonschenkel SH, Chungwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436PubMedCrossRefGoogle Scholar
  61. McMullen MD, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant-Microbe Interact 8:811–815CrossRefGoogle Scholar
  62. McMullen MD, Byrne P, Snook ME, Wiseman BR, Lee EA, Widstrom NW, Coe EH (1998) Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA 95:1996–2000PubMedCrossRefGoogle Scholar
  63. Melchinger AE (1998) Advances in the analysis of data on quantitative trait loci. In: Chopra VL, Singh RB, Varma A (eds). Crop productivity and sustainability — shaping the future. Oxford and IBH, New Delhi, pp 773–791Google Scholar
  64. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403PubMedGoogle Scholar
  65. Mentewab A, Rezanoor HN, Gosman N, Worland AJ, Nicholson P (2000) Chromosomal location of Fusarium head blight resistance genes and analysis of the relationship between resistance to head blight and brown foot rot. Plant Breed 119:15–20CrossRefGoogle Scholar
  66. Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus in lettuce are subject to divergent selection. Plant Cell 11:1833–1846Google Scholar
  67. Meyers BC, Dickermann AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J 20:312–322CrossRefGoogle Scholar
  68. Ming R, Brewbaker JL, Moon HG, Musket TA, Holley R, Pataky JK, McMullen MD (1999) Identification of a major gene, swl, conferring resistance to Stewart’s wilt in maize. Maydica 44:519–523Google Scholar
  69. Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  70. Oberhagemann P, Chatot-Bandras C, Schäfer-Pregel R, Wegener D, Palomino C, Salamini F, Bonnel E, Gebhardt C (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5:399–415CrossRefGoogle Scholar
  71. Panstruga R, Büschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062PubMedCrossRefGoogle Scholar
  72. Pe ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G (1993) Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol Gen Genet 241:11–16PubMedCrossRefGoogle Scholar
  73. Pecchioni N, Faccioli P, Toubia-Rahme H, Vale G, Terzi V, Giese H (1996) Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor Appl Genet 93:97–101CrossRefGoogle Scholar
  74. Pernet A, Hoisington D, Franco J, Isnard M, Jewell D, Jiang C, Marchand JI, Reynaud B, Glaszmann JC, Gonzalez de Leon D (1999a) Genetic mapping of maize streak virus resistance from the Mascarene source. I. Resistance in line D211 and stability against different virus clones. Theor Appl Genet 99:524–539PubMedCrossRefGoogle Scholar
  75. Pernet A, Hoisington D, Dintinger J, Jewell D, Jiang C, Khairallah M, Letourmy P, Marchand JL, Glaszmann JC, Gonzalez de Leon (1999b) Genetic mapping of maize streak virus resistance from the Mascarene source. II. Resistance in line CIRAD390 and stability across germplasm. Theor Appl Genet 99:524–539PubMedCrossRefGoogle Scholar
  76. Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A (2000) Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42:1100–1110CrossRefGoogle Scholar
  77. Richter K, Schondelmaier J, Jung C (1998) Mapping of quantitative trait loci affecting Drechslera teres resistance in barley with molecular markers. Theor Appl Genet 97:1225–1234CrossRefGoogle Scholar
  78. Robertson DS (1985) A possible technique for isolating genie DNA for quantitative traits in plants. J Theor Biol 117:1–10CrossRefGoogle Scholar
  79. Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125PubMedCrossRefGoogle Scholar
  80. Ross H (1986) Potato breeding: problems and perspectives. Adv Plant Breedl 3:1–78Google Scholar
  81. Saghai Maroof MA, Zhang Q, Biyashev RM (1994) Molecular marker analyses of powdery mildew resistance in barley. Theor Appl Genet 88:733–740CrossRefGoogle Scholar
  82. Saghai Maroof MA, Yue YG, Xiang ZX, Stromberg EL, Rufener GK (1996) Identification of quantitative trait loci controlling gray leaf spot disease in maize. Theor Appl Genet 93:539–546CrossRefGoogle Scholar
  83. Sax K (1923) Association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedGoogle Scholar
  84. Schechert AW, Welz HG, Geiger HH (1999) QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci 39:514–523CrossRefGoogle Scholar
  85. Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945CrossRefGoogle Scholar
  86. Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant-Microbe Interact 11:815–823PubMedCrossRefGoogle Scholar
  87. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Holsten T, Wang T, Zhai W-X, Zhu L-H, Franquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806PubMedCrossRefGoogle Scholar
  88. Spaner D, Shugar LP, Choo TM, Falak I, Briggs KG, Legge WG, Falk DE, Ulrich SE, Tinker NA, Steffenson BJ, Mather DE (1998) Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci 38:843–850CrossRefGoogle Scholar
  89. Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558CrossRefGoogle Scholar
  90. Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047CrossRefGoogle Scholar
  91. Thiimmler F, Wenzel G (2000) Function of genetic material: From gene structure to gene function — approaches to understanding the action of genes in higher plants. Prog Bot 61:54–75Google Scholar
  92. Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589CrossRefGoogle Scholar
  93. Utz HF, Melchinger AE (1994) Comparison of different approaches to interval mapping of quantitative trait loci. In: Van Oijen JW, Jansen J (eds). Proc 9th meeting of the EUCARPIA section biometrics in plant breeding. Meeting reports, University of Wageningen, pp 195–204Google Scholar
  94. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTLs. J Quant Trait Loci 2, article 1, on-line http://probe.nalusda.gov:8000/otherdocs/jqtl/)
  95. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849PubMedGoogle Scholar
  96. Van der Plank JE (1978) Genetic and molecular basis of plant pathogenesis. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  97. Van der Voort JNAM, Van Eck HJ, Draaistra J, Vanzandervoort PM, Jacobsen E, bBakker J (1998) An oline catalogue of AFLP markers covering the potato genome. Mol Breed 4:73–77CrossRefGoogle Scholar
  98. Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mia (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb interval on chromosome 5 S (1HS) of barley. Genetics 153:1929–1948PubMedGoogle Scholar
  99. Welz HG, Schechert AW, Geiger HH (1999) Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet 98:1036–1045CrossRefGoogle Scholar
  100. Wenzel G (1997) Function of genetic material responsible for disease resistance in plants. Prog Bot 59:80–107CrossRefGoogle Scholar
  101. Wenzel G, Lind V, Walther H (1985) Resistenzzüchtung — der genetische Beitrag zum Pflanzenschutz. Naturwissenschaften 72:25–31CrossRefGoogle Scholar
  102. Wenzel G, Lössl A, Frei U, Mohler V, Hsam SLK, Huang XQ, Thümmler F, Zeller FJ (2000) Genomics as a tool for an efficient utilisation of genetic resources using potato and wheat as examples. In: Oono K, Komatsuda T, Vaughan T (eds) Integration of biodiversity and genome technology for crop improvement. NIAR, Tsukuba, pp 7–10Google Scholar
  103. Woytowich AE, Khachatourian GG (2001) Plant fungal peptides and their use in transgenic crop plants. Appl Mycol Biotechnol 1:145–164CrossRefGoogle Scholar
  104. Xia XC, Melchinger AE, Kuntze L, Lubberstedt T (1999) QTL mapping of resistance to sugarcane mosaic virus in maize. Phytopathology 34:479–501Google Scholar
  105. Xu ML, Melchinger AE, Xia XC, Lübberstedt T (1999) High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261:574–581PubMedCrossRefGoogle Scholar
  106. Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501PubMedCrossRefGoogle Scholar
  107. Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3:285–290PubMedCrossRefGoogle Scholar
  108. Yu YG, Buss GR, Saghai-Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756PubMedCrossRefGoogle Scholar
  109. Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L em. Thell) 7. Gene Pm29 in line Pova. Euhytica (in press)Google Scholar
  110. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  111. Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTL for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Thomas Lübberstedt
    • 1
  • Volker Mohler
    • 1
  • G. Wenzel
    • 1
  1. 1.Lehrstuhl für Pflanzenbau und -züchtungTU MünchenFreising-WeihenstephanGermany

Personalised recommendations