Skip to main content

Neurodegenerative Disorders

  • Chapter
Magnetic Resonance in Dementia

Abstract

In 1907 Alois Alzheimer published the clinical history and pathological findings in a 51-year-old woman with progressive cognitive deterioration and behavior changes. He described the distinct neuro-pathological features that still are recognized as the hallmarks of the disease: senile plaques and neurofibrillary tangles. Until the middle of the twentieth century this disease, now known as Alzheimer’s disease, was considered to be a rare form of presenile dementia, then still clearly separated from senile and arteriosclerotic dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtliche Medizin, 1907; 64: 146–148 (English translation in: Arch Neurol, 1967; 21: 109-110)

    Google Scholar 

  • Aoki M, Abe K, Oda N, Ikeda M, Tsuda T, Kanai M, Shoji M, Itoyama Y. A presenilin-l mutation in a Japanese family with Alzheimer’s disease and distinctive abnormalities on cranial MRI. Neurology, 1991; 48: 1118–1120

    Google Scholar 

  • Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT. Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology, 1999; 52: 1153–1158

    CAS  PubMed  Google Scholar 

  • Barra V, Boire JY. Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation. J Magn Reson Imaging, 2000; 11: 267–278

    CAS  PubMed  Google Scholar 

  • Blacker D, Tanzi RE. The geneties of Alzheimer disease. Arch Neurol, 1998; 55: 294–296

    CAS  PubMed  Google Scholar 

  • Blessed G, Tomlinson BE, Roth M. The association between qualitative measures of dementia and of senile changes in the cerebral gray matter of elderly subjects. Br J Psychiatry 1968; 114: 797–811

    CAS  PubMed  Google Scholar 

  • Bobinski M, De Leon, Wegel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisnieski HM. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience, 2000; 95: 721–725

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E. Development of Alzheimer related neuro-fibrillary changes in the neo cortex inversely recapitulate cortical myelination genesis. Acta Neuropathol, 1996a; 92: 197–201

    CAS  Google Scholar 

  • Braak H, Braak E. Evolution of neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl, 1996b; 165 [Suppl]: 3–12

    CAS  Google Scholar 

  • Braak H, Braak E. Neuropathological stages of Alzheimer’s disease. In: de Leon MJ. ed. Atlas of Alzheimer’s disease. New York: Parthenon Publishing, 1999: 57–74

    Google Scholar 

  • Braak E, Griffing K, Arai K, Bohl J, Bratzke H, Braak H. Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci, 1999; 249: 14–22

    PubMed  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med, 2000; 343: 450–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown WR, Moody DM, Thore CR, Challa VR. Cerebrovascular pathology in Alzheimer’s disease and leukoaraiosis. Ann NY Acad Sci, 2000; 903: 39–45

    CAS  PubMed  Google Scholar 

  • Brunetti A, Postiglione A, Tedeschi E, Ciarmiello A, Quarantelli M, Covelli EM, Milan G, Larobina M, Soricelli A, Sodano A, Alfano B. Measurement of global brain atrophy in Alzheimer’s disease with unsupervised segmentation of spin-echo MRI studies. J Magn Reson Imaging, 2000; 11:260–266

    CAS  PubMed  Google Scholar 

  • Chui H, Zhang Q. Evaluation of dementia: a systematic study of the usefulness of the American Academy of Neurology practice parameters. Neurology, 1997; 49: 925–935

    CAS  PubMed  Google Scholar 

  • Chui H, Young Lee A. Clinical criteria for various dementia subtypes: Alzheimer disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). In: Qizilbash N, Schneider L, Chui H, Brodaty H, Kaye J, Erkinjuntti T, eds. Evidence based dementia. Oxford: Blackwell Science, 2001, in press

    Google Scholar 

  • Convit A, De Asis J, De Leon MJ, Tarshish CY, De Santi S, Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol Aging, 2000; 21: 19–26

    CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pencak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 828–829

    Google Scholar 

  • De Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, De Santi S, Smith G, Ferris SH, Noz M, Russinek H. The radiologic prediction of Alzheimer’s disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol, 1993; 14:897–906

    PubMed  Google Scholar 

  • De Leon MJ, Convit A, George AE, et al. In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann N Y Acad Sci, 1996; 17: 1–13

    Google Scholar 

  • Desmond PM, O’Brien JT, Tress BM, et al. Volumetric and visual assessment of the mesial temporal structures in Alzheimer’s disease. Aust N Z J Med, 1994; 24: 547–553

    CAS  PubMed  Google Scholar 

  • De Toledo-Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA. From healthy aging to early Alzheimer’s disease: in vivo detection of entorhinal cortex atrophy. Ann N Y Acad Sci, 2000a; 911: 240–253

    Google Scholar 

  • De Toledo-Morrell L, Dickerson B, Sullivan MP, Spanovic C, Wilson R, Bennett DA. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus, 2000b; 10: 136–142

    Google Scholar 

  • Dinsmore ST. Treatment options for Alzheimer’s disease. J Am Osteopath Assoc, 1999; 99 [9 Suppl]: S6–8

    CAS  PubMed  Google Scholar 

  • Duvernoy HM. The human hippocampus. Berlin Heidelberg New York: Springer, 1998

    Google Scholar 

  • Erkinjuntti T, Lee DH, Gao F, et al. Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Arch Neurol, 1993; 50: 305–310

    CAS  PubMed  Google Scholar 

  • Ernst T, Chang L, Melchor R, Mehringer CM. Frontotemporal dementia and early Alzheimer’s disease: differentiation with frontal lobe proton MR spectroscopy. Radiology, 1997;203:829–836

    CAS  PubMed  Google Scholar 

  • Esiri MM, Hyman BT, Beyreuther K, Martus CL. Ageing and dementia. In: Graham DI, Lantos PL, eds. Greenfield’s neuropathology, 5th edn, vol 1. London: Arnold Publishing, 1997: 153–233

    Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975; 12: 189–198

    CAS  PubMed  Google Scholar 

  • Fox NC, Freeborough PA, Rossor MN. Visualisation and quantification of atrophy in Alzheimer’s disease. Lancet, 1996;348:94–97

    CAS  PubMed  Google Scholar 

  • Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol, 2000; 57: 339–344

    CAS  PubMed  Google Scholar 

  • Fox NC, Rossor MN. Diagnosis of early Alzheimer’s disease. Rev Neurol (Paris), 1999; 155: 4 [Suppl]: 33–37

    Google Scholar 

  • Frisoni GB, Beltramello A, Weiss C, Geroldi C, Bianchetti A, Trabucchi M. Linear measures of atrophy in mild Alzheimer’s disease. AJNR Am J. Neuroradiol 1996; 17: 913–923

    CAS  PubMed  Google Scholar 

  • Goulding JM, Signorini DF, Chatterjee S, Nicoll JA, Stewart J, Morris R, Lammie G. Inverse relation between Braak stage and cerebrovascular pathology in Alzheimer predominant dementia. J Neurol Neurosurg Psychiatry, 1999;67:654–657

    CAS  PubMed  Google Scholar 

  • Golomb J, De Leon MJ, Kluger A, George AE, Tarshish C, Ferris SH. Hippocampal atrophy in normal aging. Arch Neurol,1993;50:967–973

    CAS  PubMed  Google Scholar 

  • Hardy J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci, 1997; 20: 54–159

    Google Scholar 

  • Herminghaus R, Hertel A, Wittsack J, Gorriz C, Moller-Hartmann W, Frohlich L, Dierks T, Lanfermann H, Zanella FE. 99mTC-HMPAO-SPECT and proton MR spectroscopy in the diagnosis of Alzheimer’s disease. Riv Neuroradiol, 1998; 11: 27–30

    Google Scholar 

  • Hirono N, Yasuda M, Tanimukai S, Kitagaki H, Mori E. Effect of the apolipoprotein E epsilon4-allele on white matter hypointensities in dementia. Stroke, 2000; 31: 1263–1268

    CAS  PubMed  Google Scholar 

  • Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkänen A. MR volumetric analysis of the human entorhinal, perirhinal and temporopolar cortices. AJNR Am J Neuroradiol, 1998; 19: 659–671

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 2000; 55: 484–489

    PubMed Central  PubMed  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O‘Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology, 2000; 55: 210–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly CA, Harvey RJ, Cayton H. Drug treatments for Alzheimer’s disease (editorial). BMJ, 1997; 314: 693–694

    CAS  PubMed  Google Scholar 

  • Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones K, Hyman BBT, Albert MS. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol, 2000; 47: 430–439

    CAS  PubMed  Google Scholar 

  • Kitagaki H, Mori E, Yamaji S, Ishii K, Hirono N, Kobashi S, Hata Y. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology, 1998; 208: 431–439

    CAS  PubMed  Google Scholar 

  • Knopman DS, Morris JC. An update on primary drug therapies for Alzheimer’s disease. Arch Neurol, 1997; 54: 1406–1409

    CAS  PubMed  Google Scholar 

  • Laakso MP, Lehtovirta M, Partanen K, Riekkinen PJ, Soininen H. Hippocampus in Alzheimer’s disease: a 3-year follow-up study. Biol Psychiatry, 2000; 47: 557–561

    CAS  PubMed  Google Scholar 

  • Massoud F, Devi G, Moroney JT, et al. The role of routine laboratory studies and neuroimaging in the diagnosis of dementia: a clinicopathological study. J Am Geriatr Soc 2000;48: 1204–1210

    CAS  PubMed  Google Scholar 

  • McKhan G, Drachman D, Folstein M, Katzman R, Price D, Stadian EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:839–944

    Google Scholar 

  • Meyer JS, Muramatsu K, Mortel KF, Obara K, Shirai T. Prospective CT confirms differences between vascular and Alzheimer’s dementia. Stroke, 1995; 26: 735–742

    CAS  PubMed  Google Scholar 

  • Meyer JS, Rauch GM, Rauch RA, Haque A, Crawford K. Cardiovascular and other risk factors for Alzheimer’s disease and vascular dementia. Ann N Y Acad Sci, 2000; 903:411–423

    CAS  PubMed  Google Scholar 

  • Mizuno K, Wakai M, Takeda, A, Sobue G. Medial temporal atrophy and memory impairment in early stage of Alzheimer’s disease: an MRI volumetric and memory assessment study. J Neurol Sci, 2000; 173: 18–24

    CAS  PubMed  Google Scholar 

  • Nagata K, Maruya H, Yuja H, Terashi H, Mito Y, Kato H, Sato M, Satoh Y, Watahiki Y, Hirata Y, Yokoyama E, Hatazawa J. Can PET data differentiate Alzheimer’s disease from vascular dementia? Ann N Y Acad Sci, 2000; 903: 252–261

    CAS  PubMed  Google Scholar 

  • O’Brien JT, Desmond P, Ames D, Schweitzer I, Chiu E, Tress B. Temporal lobe magnetic resonance imaging can differentiate Alzheimer’s disease from normal ageing, depression, vascular dementia and other causes of cognitive impairment. Psychol Med 1997; 27: 1267–1275

    PubMed  Google Scholar 

  • Pantel J, Schröder J. Posterior cortical atrophy: ein neues Demenzsyndrom oder Sonderform des morbus Alzheimer? Fortsehr Neurol Psychiatr, 1996; 64: 492–508

    CAS  Google Scholar 

  • Pasquier F, Hamon M, Lebert F, Jacob B, Pruvo JP, Petit H. Medial temporal lobe atrophy in memory dis orders. J Neurol,1997;244: 175–181

    CAS  PubMed  Google Scholar 

  • Petersen RC, Jack CR Jr, Xu YC, Waring SC, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Boeve BF, Kokmen E. Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 2000; 54: 581–587

    CAS  PubMed  Google Scholar 

  • Pucci E, Belardinelli N, Regnicolo L, Nolfe G, Signorino M, Salvolini V, Angeleri F. Hippocampus and parahippocampal gyrus linear measurements based on magnetic resonance in Alzheimer’s disease. Eur Neurol 1998; 39: 16–25

    CAS  PubMed  Google Scholar 

  • Rombouts SA, Barkhof F, Veltman DJ, Machielson WC, Witter MP, Bierlaagh MA, Lazeron RH, Valk J, Scheltens P. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 2000; 21: 869–875

    Google Scholar 

  • Saunders DE, Howe FA, Van den Boogaart A, Griffiths JR, Brown MM. Aging of the adult brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging, 1999; 9: 711–716

    CAS  PubMed  Google Scholar 

  • Scheltens P, Barkhof F, Valk J, et al. White matter lesions in clinically diagnosed Alzheimer’s disease: evidence for heterogeneity. Brain, 1990; 53: 79–80

    CAS  Google Scholar 

  • Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in probable Alzheimer’s disease and normal aging: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967–972

    CAS  PubMed  Google Scholar 

  • Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medical temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242: 557–560

    CAS  PubMed  Google Scholar 

  • Scheltens P, Launer LJ, Barkhof F, Weinstein HC, Jonker C. The diagnostic value of magnetic resonance imaging and technetium 99m-HMPAO single-photon-emission-computed-tomography for the diagnosis of Alzheimer disease in a community-dwelling elderly population. Alzheimer Dis Assoc Disord 1997; 11: 63–70

    CAS  PubMed  Google Scholar 

  • Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD. Probable Alzheimer’s disease: diagnosis with proton MR spectroscopy. Radiology 1995; 195: 65–72

    CAS  PubMed  Google Scholar 

  • Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol, 1999; 45: 466–472

    CAS  PubMed  Google Scholar 

  • Tohgi H, Yonezawa H, Takahashi S, Sato N, Kato E, Kudo M, Hatano K, Sasaki T. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer’s type and vascular dementia with deep white matter changes. Neuroradiology, 1998; 40: 131–137

    CAS  PubMed  Google Scholar 

  • Varma AR, Snowden JS, Lloyd JJ, Talbot PR, Mann DMA, Neary D. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry, 1999; 66: 184–188

    CAS  PubMed  Google Scholar 

  • Wahlund L-O, Julin P, Lindqvist J, Scheltens P. Visual assessment of medial temporal lobe atrophy in demented and healthy controls: correlation with volumetry. Psychiatry Res 1999;90: 193–199

    CAS  PubMed  Google Scholar 

  • Wahlund LO, Julin P, Lindqvist J, Scheltens P. Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study. J Neurol Neurosurg Psychiatry, 2000; 69: 630–635

    CAS  PubMed  Google Scholar 

  • Waldemar G, Dubois B, Emre M, Scheltens P, Tariska P, Rosor MN. Diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: the role of neurologists in Europe. Eur J Neurol, 2000; 7:133–144

    CAS  PubMed  Google Scholar 

  • Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, Petersen RC. Usefulness of MRI measured of entorhinal cortex versus hippocampus in AD. Neurology, 2000; 54: 1760–1767

    CAS  PubMed  Google Scholar 

  • Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT. Medial temporal lobe atrophy on MRI in dementia with Lewy bodies: a comparison with Alzheimer’s disease, vascular dementia and normal ageing. Neurology, 1999a; 52: 1153–1158

    CAS  Google Scholar 

  • Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, Morris CM, O’Brien JT. Apolipoprotein E4 allele, temporal lobe atrophy, and white matter lesions in late life dementias. Arch Neurol, 1999b; 56: 961–965

    CAS  Google Scholar 

  • Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology, 2000;54: 1304–1309

    CAS  PubMed  Google Scholar 

  • Byrne EJ, Lennox G, Godwin-Austen RB, et al. Dementia associated with cortical Lewy bodies: proposed diagnostic criteria. Dementia, 1990; 2: 283–284

    Google Scholar 

  • Byrne EJ, Lennox G, Lowe J, Godwin-Austen RB. Diffuse Lewy body disease: clinical features in 15 cases. J Neurol Neurosurg Psychiatry, 1989; 52: 709–714

    CAS  PubMed  Google Scholar 

  • Crystal HA, Dickson DW, Lizardi JE, Davies P, Wolfson LI. Antemortem diagnosis of diffuse Lewy body disease. Neurology, 1990;40: 1523–1528

    CAS  PubMed  Google Scholar 

  • Dickson DW, Davies P, Mayeux R, Crystal H, Horoupian DS, Thompson A, Goldman JE. Diffuse Lewy body disease: neuropathological and biochemical studies of six patients. Acta Neuropathol, 1987; 75: 8–15

    CAS  PubMed  Google Scholar 

  • Forstl H. The Lewy body variant of Alzheimer’s disease: clinical, pathophysiological and conceptual issues. Eur Arch Psychiatry Clin Neurosci, 1999; 249(3): 64–67

    PubMed  Google Scholar 

  • Gibb WRG, Esiri MM, Lees AJ. Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain, 1987; 110: 1131–1153

    PubMed  Google Scholar 

  • Hansen L, Salmon D, Galasko D, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology, 1990; 40: 1–8

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Kitagaki H, Imamura T, Hirono N, Shimomura T, Kazui H, Tanimukai S, Hanihara T, Mori E. Medial temporal and whole-brain atrophy in dementia with Lewy bodies: a volumetric MRI study. Neurology, 1998; 51:357–362

    CAS  PubMed  Google Scholar 

  • Hohl U, Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. Diagnostic accuracy of dementia with Lewy bodies. Arch Neurol, 2000; 57: 347–351

    CAS  PubMed  Google Scholar 

  • Lewy FH. Paralysis agitans. I. Pathologische Anatomie. In: Lewandowsky M, ed. Handbuch der Neurologie III. Berlin: Springer, 1912: 920–933

    Google Scholar 

  • Londos E, Passant U, Brun A, Gustafson L. Clinical Lewy body dementia and the impact of vascular components. Int J Geriatr Psychiatry, 2000; 15: 40–49

    CAS  PubMed  Google Scholar 

  • Lopez OL, Hamilton RL, Becker JT, Wisniewski S, Kaufer DI, DeKosky ST. Severity of cognitive impairment and the clinical diagnosis of AD with Lewy bodies. Neurology, 2000;54: 1780–1787

    CAS  PubMed  Google Scholar 

  • McKeith I, O’Brien J. Dementia with Lewy bodies. Aust N Z J Psychiatry, 1999; 33: 800–808

    CAS  PubMed  Google Scholar 

  • McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology, 1996; 47: 1113–1124

    CAS  PubMed  Google Scholar 

  • McKeith IG, O’Brien J, Ballard C. Diagnosing dementia with Lewy bodies. Lancet, 2000; 354: 1227–1228

    Google Scholar 

  • Mori E, Shimomura T, Fujimori M, Hirono N, Imamura T, Hashimoto M, Tanimukai S, Kazui H, Hanihara T. Visuoperceptual impairment in dementia with Lewy bodies. Arch Neurol, 2000; 57: 489–493

    CAS  PubMed  Google Scholar 

  • Ohara K, Takauchi S, Kokai M, Morimura Y, Nakajima T, Morita Y. Familial dementia with Lewy bodies. Clin Neuropathol, 1999; 18:232–239

    CAS  PubMed  Google Scholar 

  • Okazaki H, Lipton LS, Aronson SM. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadrapesis in flexion. J Neurol Neurosurg Psychiatry, 1961; 20: 237–244

    CAS  Google Scholar 

  • Papka M, Rubio A, Schiffer RB, Cox C. Lewy body disease: can we diagnose it? J Neuropsychiatry Clin Neurosci, 1998;10:405–412

    CAS  PubMed  Google Scholar 

  • Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK. Senile dementia of Lewy body type: a clinically and neuro-pathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 1990; 95: 119–139

    CAS  PubMed  Google Scholar 

  • Shoji M, Harigaya Y, Veda K, Ishiguro K, Matsubara E, Watanabe M, Ikeda M, Kanai M, Tomidokoro Y, Shizuka M, Amari M, Kosaka K, Nakazato Y, Okamoto K, Hirai S. Accumulation of NACP/alpha-synuclein in Lewy body disease and multiple system atrophy. J Neurol Neurosurg Psychiatry, 2000; 68: 605–608

    CAS  PubMed  Google Scholar 

  • Baker M, Kwok JBJ, Kucera S, Crook R, Farrer M, Houlden H, Isaacs A, Lincoln S, Onstead L, Hardy I, Wittenberg L, Dodd P, Webb S, Hayward N, Tannenberg T, Andreadis A, Hallupp M, Schofield P, Dark F, Hutton M. Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Ann Neurol,1997;42:794–798

    CAS  PubMed  Google Scholar 

  • Basun H, Almkvist O, Axelman K, Brun A, Campbell TA, Collinge I, Forsell C, Froelich S, Wahlund LO, Wetterberg L, Lannfelt L. Clinical characteristics of a chromosome 17-linked rapidly progressive familial frontotemporal dementia. Arch Neurol, 1997; 54: 539–544

    CAS  PubMed  Google Scholar 

  • Bergmann M, Kuchelmeister K, Schmid KW, Kretschmar HA, Schräder R. Different variants of frontotemporal dementia: a neuropathological and immunohistochemical study. Acta Neuropathol, 1996; 92: 170–179

    CAS  PubMed  Google Scholar 

  • Brown J. Pick’s disease. Baillieres Clin Neurol, 1992; 1: 535–557

    CAS  PubMed  Google Scholar 

  • Brown J, Asworth A, Gydesen S. Familial non-specific dementia maps to chromosome 3. Hum Mol Genet 1995; 4:1625–1628

    CAS  PubMed  Google Scholar 

  • Brun A. Frontal lobe degeneration of non-Alzheimer type revisited. Dementia, 1993; 4: 126–131

    CAS  PubMed  Google Scholar 

  • Caselli RJ, Windebank AJ, Petersen RC, Komori T, Parisi IE, Okazaki H, Kokmen E, Iverson R, Dinapoli RP. Asymmetric cortical degenerative syndromes. Curr Opin Neurol, 1996;9:276–280

    CAS  PubMed  Google Scholar 

  • Chang L, Cornford M, Miller BL, Itabashi H, Mena I. Neuronal ultrastructural abnormalities in a patient with frontotemporal dementia and motor neuron disease. Dementia, 1995; 6: 1–8

    CAS  PubMed  Google Scholar 

  • Cherrier MM, Mendez MF, Perryman KM, Pachana NA, Miller BL, Cummings IL. Frontotemporal dementia versus vascular dementia: differential features on mental status examination. I Am Geriatr Soc, 1997; 45: 579–583

    CAS  Google Scholar 

  • Constantinidis I, Richard J, Tissot R. Piek’s disease: histological and clinical correlations. Eur Neurol, 1974; 11: 208–217

    CAS  PubMed  Google Scholar 

  • Cooper PN, Jackson M, Lennox G, Lowe J, Mann DM. Tau, ubiquitin, and alpha B-crystallin immunohistochemistry define the principal causes of degenerative frontotemporal dementia. Arch Neurol, 1995; 52: 1011–1015

    CAS  PubMed  Google Scholar 

  • Delacourte A, Robitaille Y, Sergeant N, Buee L, Hof PR, Wattez A, Laroche-Cholette A, Mathieu J, Chagnon P, Gauvreau D. Specific pathological Tau protein variants characterize Piek’s disease. J Neuropathol Exp Neurol, 1996; 55:159–168

    CAS  PubMed  Google Scholar 

  • Elfgren C, Passant U, Risberg I. Neuropsychological findings in frontal lobe dementia. Dementia, 1993; 4: 214–219

    CAS  PubMed  Google Scholar 

  • Elfgren C, Ryding E, Passant U. Performance on neuropsychological tests related to single photon emission computerised tomography findings in frontotemporal dementia. Br J Psychiatry, 1996; 169: 416–422

    CAS  PubMed  Google Scholar 

  • Feany MB, Dickson DW. Neurodegenerative disorders with extensive Tau pathology: a comparative study and review. Ann Neurol, 1996; 40: 139–148

    CAS  PubMed  Google Scholar 

  • Feany MB, Mattiace LA, Dickson DW. Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol Exp Neurol, 1990;55:53–67

    Google Scholar 

  • Foster NL, Wilhelsen KC, Sima AAF, Jones MZ, D’Amato CJ, Gilman S, and conference participants. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol, 1997; 41: 706–715

    CAS  PubMed  Google Scholar 

  • Frisoni GB, Beltramello A, Geroldi C, Weiss C, Bianchetti A, Trabucchi M. Brain atrophy in frontotemporal dementia. J Neurol Neurosurg Psychiatry, 1996; 61: 157–165

    CAS  PubMed  Google Scholar 

  • Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A, Lannfelt L. Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromo-some 17q21-22. Am J Med Genet, 1997; 74: 380–385

    CAS  PubMed  Google Scholar 

  • Galton CJ, Gomez-Anson B, Antoun N, Scheltens P, Patterson K, Graves M, Sahakian BJ, Hodges JR. Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry, 2001;70: 165–173

    CAS  PubMed  Google Scholar 

  • Graff-Radford, Stein SD. Rapidly progressive aphasic dementia and motor neuron disease. Ann Neurol, 1993; 33 200–207

    PubMed  Google Scholar 

  • Grossman M, Désposito M, Hughes E, Onishi K, Biassou N, White-Devine T, Robinson KM. Language comprehension proflles in Alzheimer’s disease, multi-infarct dementia, and frontotemporal degeneration. Neurology, 1996;47: 183–189

    CAS  PubMed  Google Scholar 

  • Gustafson L. Clinical picture of frontal lobe degeneration of non-Alzheimer type. Dementia, 1993; 4: 143–148

    CAS  PubMed  Google Scholar 

  • Gustafson L, Abrahamson M, Grubb A, Nilsson K, Fex G. Apolipoprotein-E genotyping in Alzheimer’s disease and frontotemporal dementia. Dement Geriatr Cogn Disord, 1997;8:240–243

    CAS  PubMed  Google Scholar 

  • Hauw JJ, Duyckaerts C, Seilhean D, Camilleri S, Sazdovitch V, Rancurel G. The neuropathologic diagnostic criteria of frontal lobe dementia revisited: a study of ten consecutive cases. J Neural Transm, 1996; 47: 47–59

    CAS  Google Scholar 

  • Heutink P, Stevens M, Rizzi P, Bakker E, Kros JM, Tibben A, Niermeijer MF, van Duijn CM, Oostra BA, van Swieten JC. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol, 1997; 41:150–159

    CAS  PubMed  Google Scholar 

  • Hof PR, Bouras C, Perl DP, Morrison JH. Quantitative neuropathologiC analysis of Pick’s disease cases: cortiCal distribution of Pick bodies and coexistence with Alzheimer’s disease. Acta NeuropathoL, 1994; 87: 115–124

    CAS  PubMed  Google Scholar 

  • Holister RD, Xia M, McNamara MJ, Hyman BT. Neuronal expression of class II major histocompatibility complex (HLA-DR) in 2 cases of Pick disease. Arch Neurol, 1997; 54:243–248

    Google Scholar 

  • Hooten WM, Lyketsos CG. Frontotemporal dementia: a clinicopathological review of four postmortem studies. J Neuropsychiatry Clin Neurosci, 1996; 8: 10–19

    CAS  PubMed  Google Scholar 

  • Jackson M, Lowe J. The new neuropathology of degenerative frontotemporal dementias. Acta Neuropathol, 1996; 91:127–134

    CAS  PubMed  Google Scholar 

  • Jellinger KA. Quantitative neuropathologic analysis of Pick’s disease cases. Acta Neuropathol, 1994; 87: 223–224

    CAS  PubMed  Google Scholar 

  • Kato S, Oda M, Hayashi H, Kawata A, Shimizu T. Participation of the limbic system and its associated areas in the dementia of amyotrophic lateral sclerosis. J Neurol Sci, 1994; 126:62–69

    CAS  PubMed  Google Scholar 

  • Kertesz A, Munoz D. Pick’s disease, frontotemporal dementia, and Pick complex. Arch Neurol, 1998; 55:302–304

    CAS  PubMed  Google Scholar 

  • Kitagaki H, Mori E, Hirono N, Ikejiri Y, Ishii K, Imamura T, Ikeda M, Yamaji S, Yamashita H, Shimomura T, Nakagawa Y. Alteration of white matter MR signal intensity in frontotemporal dementia. AJNR Am J Neuroradiol, 1997; 18:367–378

    CAS  PubMed  Google Scholar 

  • Kitagaki H, Mori E, Yamaji S, Hirono N, Kobashi S, Hata Y. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology, 1998;208:431–439

    CAS  PubMed  Google Scholar 

  • Klüver H, Bucy PC. Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry, 1939;42:547–554

    Google Scholar 

  • Knopman DS, Christensen KJ, Schut LJ, Harbaugh RE, Reeder T, Ngo T, Frey W. The spectrum of imaging and neuropsychological findings in Pick’s disease. Neurology, 1989;39:362–368

    CAS  PubMed  Google Scholar 

  • Knopman DS, Mastri AR, Frey WH, Sung JH, Rustan T. Dementia lacking distinctive histologic al features: a common non-Alzheimer degenerative dementia. Neurology, 1990;40:251–256

    CAS  PubMed  Google Scholar 

  • Kobashi S, Kamiura N, Hata Y, Yamato K. 3D-automatic extraction method of the brain regions by fuzzy matching techniques. In: Asian fuzzy systems symposium: soft computing in intelligent systems and information processing. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 1996: 164–175

    Google Scholar 

  • Leonard BE. Serotonin receptors: where are they going? Int Clin Psychopharmacol, 1994; 9 [Supp 1]: 7–17

    PubMed  Google Scholar 

  • Levy ML, Miller BL, Cummings JL, Fairbanks LA, Craig A. Alzheimer disease and frontotemporal dementias: behavioral distinctions. Arch Neurol, 1996; 53: 687–690

    CAS  PubMed  Google Scholar 

  • Lieberman AP, Trojanowski JQ, Lee VMY, Balin BJ, Ding XS, Greenberg J, Morrison D, Reivich M, Grossman M. Cognitive, neuroimaging, and pathological studies in a patient with Pick’s disease. Ann Neurol, 1998; 43: 259–265

    CAS  PubMed  Google Scholar 

  • Lund and Manchester groups. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry, 1994; 57: 416–418

    Google Scholar 

  • Lynch T, Sano M, Marder KS, Bell KL, Foster NL, Defendini RF, Sima AAF, Keohane C, Nygaard TG, Fahn S, Mayeux R, Rowland LP, Wilhelmsen KC. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology, 1994;44: 1878–1884

    CAS  PubMed  Google Scholar 

  • Mann DMA, South PW, Snowden JS, Neary D. Dementia of the frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry, 1993; 56: 605–614

    CAS  PubMed  Google Scholar 

  • Matsumoto S, Kusaka H, Ito H, Shibata N, Asayama T, Imai T. Sporadic amyotrophic lateral sclerosis with dementia and Cu/Zn superoxide dismutase-positive Lewy bodylike inclusions. Clin Neuropathol, 1996; 15: 41–46

    CAS  PubMed  Google Scholar 

  • Mendez MF, Cherrier M, Perryman KM, Pachana N, Miller BL, Cummings JL. Frontotemporal dementia versus Alzheimer’s disease: differential cognitive features. Neurology, 1996; 47: 1189–1194

    CAS  PubMed  Google Scholar 

  • Mendez MF, Selwood A, Mastri AR, Frey WH. Pick’s disease versus Alzheimer’s disease: a comparison of clinical characteristics. Neurology, 1993; 43: 289–292

    CAS  PubMed  Google Scholar 

  • Miller BL, Cummings JL, Villanueva-Meyer J, Boone K, Mehringer CM, Lesser IM, Mena I. Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology, 1991; 41: 1374–1382

    CAS  PubMed  Google Scholar 

  • Miller BL, Ikonte C, Ponton M, Levy M, Boone K, Darby A, Berman N, Mena I, Cummings JL. A study of the Lund-Manchester research criteria for frontotemporal dementia: clinical and single-photon emission tomography and CT correlations. Neurology, 1997; 48: 937–942

    CAS  PubMed  Google Scholar 

  • Montgomery SA, Fineberg N. Is there a relationship between serotonin receptor subtypes and selectivity of response in specific psychiatric illnesses? Br J Psychiatry, 1989; 155 [Suppl 8]: 63–70

    Google Scholar 

  • Nagaoka S, Arai H, Iwamoto N, Ohwada J, Ichimiya Y, Nakamura M, Inoue R. A juvenile case of frontotemporal dementia: neurochemical and neuropathological investigations. Prog Neuro-Psychopharmacol Biol Psychiatry, 1995; 19: 1251–1261

    CAS  Google Scholar 

  • Neary D, Snowdon JS. Frontotemporal dementia. In: Pasquier F, Lebert F, Scheltens P, eds. Frontotemporal dementia. Current issues in neurodegenerative disorders, vol 8. Dordrecht: ICG Publications, 1997: 31–48

    Google Scholar 

  • Neary D, Snowden JS, Northen B, Goulding P. Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry, 1988; 51:353–361

    CAS  PubMed  Google Scholar 

  • Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 1998; 51: 1546–1554

    CAS  PubMed  Google Scholar 

  • Petersen BB, Tabatou M, Chen SG, Monari L, Richardson SL, Lynckes T, Manetto V, Lanska DJ, Markesbery WR, Currier RD, Autilio-Gambetti L, Wilhelmsen KC, Gambetti P. Familial progressive subcortical gliosis. Neurology, 1995; 45: 1062–1067

    CAS  PubMed  Google Scholar 

  • Pick A. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag Med Wochensehr, 1892; 17: 165–167

    Google Scholar 

  • Pick A. Über primare progressive Demenz bei Erwachsenen. Prag Med Wochensehr, 1904; 29: 417–420

    Google Scholar 

  • Pick A. Zur Symptomatologie der linksseitigen Schlaffenlappen atrophie. Monatschr Psychiatr (Berlin), 1905; 16: 378–388

    Google Scholar 

  • Pick A. Über ein weiteres Symptomencomplex im Rahmen der Dementia senilis, bedingt durch umschriebene stärkere Hirnatrophie. Monatschr Psychiatr (Berlin), 1906; 19:97–108

    Google Scholar 

  • Pookaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L. Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD. Tau is a candidate gene for chromo-some 17 frontotemporal dementia. Ann Neurol, 1998; 43:815–825

    Google Scholar 

  • Risberg J. Frontal lobe degeneration of non-Alzheimer type. III. Regional cerebral blood flow. Arch Gerontol Geriatr, 1987;6:225–233

    CAS  PubMed  Google Scholar 

  • Sima AF, Defendini RF, Keohande D, D’Amato C, Foster NL, Parchi P, Gambetti P, Lynch T, Wilhelmsen KC. The neuropathology of chromosome 17-linked dementia. Ann Neurol,1996;39:734–744

    CAS  PubMed  Google Scholar 

  • Sparks DC, Markesbery WR. Altered serotinergic and cholinergic synaptic markers in Pick’s disease. Arch Neurol, 1991;48:796–799

    CAS  PubMed  Google Scholar 

  • Swartz JR, Miller BL, Lesser IM, Booth R, Darby A, Wohl M, Frank Benson D. Behavioral phenomenology in Alzheimer’s disease, frontotemporal dementia and late-life depression: a retrospective analysis. J Geriatr Psychiatry Neurol, 1997a; 10:67–74

    CAS  Google Scholar 

  • Swartz JR, Miller BL, Lesser IM, Darby AL. Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry, 1997b; 58: 212–216

    CAS  Google Scholar 

  • Talbot PR. Frontal lobe dementia and motor neuron disease. J Neural Transm, 1996; 47: 125–132

    CAS  Google Scholar 

  • Talbot PR, Goulding PJ, Lloyd JL, Snowden JS, Neary D, Testa HJ. Inter-relation between “classic” motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry, 1995; 58: 541–547

    CAS  PubMed  Google Scholar 

  • Tolnay M, Probst A. Frontal lobe degeneration: novel ubiquitin-immunoreactive neurites within frontotemporal cortex. Neuropathol Appl Neurobiol, 1995; 21: 492–497

    CAS  PubMed  Google Scholar 

  • Varma AR, Lloyd JJ, Talbot PR, Mann DM, Neary D. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 1999; 66: 184–188

    CAS  PubMed  Google Scholar 

  • Vermersch P, Daems-Monpeurt C, Parent M, Pruvo JP, Delacourte A, Petit H. Demence sous-corticale type Neumann. Rev Neurol, 1994; 150: 354–358

    CAS  PubMed  Google Scholar 

  • Waddington JL, Youssef HA, Farrell MA, Toland J. Initial schizophrenia-like psychosis in Pick’s disease: case study with neuroimaging and neuropathology, and implications for frontotemporal dysfunction in schizophrenia. Schizophrenia Res, 1995; 18: 79–82

    CAS  Google Scholar 

  • Warkentin S, Passant U. Functional imaging of the frontal lobes in organic dementia. Dement Geriatr Cogn Disord, 1997;8: 105–109

    CAS  PubMed  Google Scholar 

  • Wightman G, Anderson VER, Martin J, Swash M, Anderton BH, Neary D, Mann D, Luthert P, Leigh PN. Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett, 1992; 139: 269–274

    CAS  PubMed  Google Scholar 

  • Wijker M, Wszolek ZK, Wolters E, Rooimans MA, Pals G, Pfeiffer RF, Lynch T, Rodnitzky RL, Wilhelmsen KC, Arwert F. Localisation of the gene for rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration to chromosome 17q21. Hum Mol Genet, 1996; 51: 151–154

    Google Scholar 

  • Wilhelmsen KC, Lynch T, Pavlou E, Higgins M, Nygaard TG. Localization of disinhibition-dementia-parkinsonismamyotrophy complex to 17q21-22. Am J Hum Genet, 1994;55: 1159–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilhelmsen KC. Disinhibition-dementia-parkinsonismamyotrophy complex (DDPAC) is a non-Alzheimer’s frontotemporal dementia. J Neural Transm, 1997; 49: 269–275

    CAS  Google Scholar 

  • Wong AHC, Van Tol HHM, Schoots O, Shugar G. Familial dementia of the frontal lobe type. Can J Psychiatry, 1995; 41:645–647

    Google Scholar 

  • Yamaoka LH, Welsh-Bomer KA, Hulette CM, Gaskell C Jr, Murray M, Rimmler JL, Helms BR, Guerra M, Roses ADM, Schmechel DE, Pericak-Vance MA. Linkage of frontotemporal dementia to chromosome 17: clinical and neuropathological characterization of phenotype. Am J Hum Genet, 1996; 59: 1306–1312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abe K, Ukita H, Yanagihara T. Imaging in primary progressive aphasia. Neuroradiology, 1997; 39: 556–559

    CAS  PubMed  Google Scholar 

  • Aharon-Peretz J, Israel O, Goldsher D, Peretz A. Posterior cortical atrophy variants of Alzheimer’s disease. Dement Geriatr Cogn Disord, 1999; 10: 483–487

    CAS  PubMed  Google Scholar 

  • Andersen C, Dahl C, Alrnkvist O, Ostberg P, Julin P, Wahlung LO. Bilateral temporal lobe volume reduction paralleis cognitive impairment in progressive aphasia. Arch Neurol, 1997;54: 1294–1299

    CAS  PubMed  Google Scholar 

  • Ardila A, Roselli M, Arvizu L, Kuljis RO. Alexia and agraphia in posterior cortical atrophy. Neuropsychiatry Neuropsychol Behav Neurol, 1997; 10: 52–59

    CAS  PubMed  Google Scholar 

  • Balint R. Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsehr Psychiatr Neurol, 1909; 25: 51–81

    Google Scholar 

  • Bauer RM. Agnosia: In: Heilman KM, Valenstein E, eds. Clinical neuropsychology. Oxford: Oxford University Press, 1993

    Google Scholar 

  • Benson DF, Davis RJ, Snyder BD. Posterior cortical atrophy. Arch Neurol, 1988; 45: 789–793

    CAS  PubMed  Google Scholar 

  • Benson DF. Posterior cortical atrophy: a new clinical entity or Alzheimer’s disease? Arch Neurol, 1989; 46: 844

    Google Scholar 

  • Benton A. The neuropsychology of facial recognition. Am Psychol, 1980;35: 176–186

    CAS  PubMed  Google Scholar 

  • Bruce V, Young A. Understanding facial recognition. Br J Psychol,1986;77:305–327

    PubMed  Google Scholar 

  • Caselli RJ, Jack CR. Asymmetric cortical degeneration syndromes. Arch Neurol, 1992; 49: 770–780

    CAS  PubMed  Google Scholar 

  • Caselli RJ. Asymmetric cortical degeneration syndromes. Curr Opin Neurol, 1996; 9: 276–280

    CAS  PubMed  Google Scholar 

  • Clarke S, Lindemann A, Maeder P, Borruat FX, Assal G. Face recognition and postero-inferior hemispheric lesions. Neuropsychiologia, 1997; 35: 1555–1563

    CAS  Google Scholar 

  • Cooper PN, Jackson M, Lennox G, Lowe J, Mann DMA. τ, ubiquitin and αß-crystallin immuno-histochemistry define the principal causes of degenerative frontotemporal dementia. Arch Neurol, 1995; 52: 1011–1015

    CAS  PubMed  Google Scholar 

  • De Gelder B, Rouw R. Paradoxal configuration effects for faces and objects in prosopagnosia. Neuropsychologia, 2000;38: 1271–1279

    PubMed  Google Scholar 

  • De Haan EHF, Young AW, Newcombe F. Neuropsychological impairment of face recognition units. Q J Exp Psychol, 1992;44: 141–175

    Google Scholar 

  • De Renzi E, Faglioni P, Spinnler H. The performance of patients with unilateral brain damage on facial recognition tasks. Cortex, 1968; 26: 16–33

    Google Scholar 

  • Delay J, Neveu P, Desclaux P. La forme pariéto-occipitale de la maladie de Pick. Etude de l’agnosie visuelle. Rev Neurol (Paris), 1944; 76: 264–265

    Google Scholar 

  • Duchenne BC. Developmental prosopagnosia with normal configural processing. Neuroreport, 2000; 11: 79–83

    Google Scholar 

  • Edwards-Lee T, Miller BL, Benson DF, Cummings JL, Russell GL, Boone K, Mena I. The temporal variant of frontotemporal dementia. Brain, 1997; 120: 1027–1040

    PubMed  Google Scholar 

  • Graff-Radford NR, Damassio AR, Hyman BT, Hart MN, Tranel D, Damasio AR, Hyman BT, Hart MN, Tranel D, Damasio H, Van Hoesen GW, Rezai K. Progressive aphasia in a patient with Pick’s disease. Neurology, 1990; 40: 620–626

    CAS  PubMed  Google Scholar 

  • Kertesz A, Minoz D. Primary progressive aphasia. Clin Neurosci, 1997; 4: 95–102

    CAS  PubMed  Google Scholar 

  • Kleist K. Gehirnpathologie. In: Handbuch der ärztlichen Erfahrungen im Weltkrieg 1914/1918, vol IV. Leipzig: Barth,1922-1934

    Google Scholar 

  • Lang AE, Maragonore D, Marsden CD, Tanner C. Movement Disorder Society symposium on cortico-basal ganglionic degeneration (CBGD) and its relationship to other asymmetrical cortical degeneration syndromes. Mov Disord 1996; 11: 346–357

    Google Scholar 

  • Mattson AJ, Levin HS, Grafman J. A case of prosopagnosia following moderate closed head injury with left hemisphere focal lesion. Cortex, 2000; 36: 125–137

    CAS  PubMed  Google Scholar 

  • Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol, 1982; 11: 592–598

    CAS  PubMed  Google Scholar 

  • Miller BL, Chang L, Mena J, Boone K, Lesser IM. Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia, 1993; 4: 204–213

    CAS  PubMed  Google Scholar 

  • Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M, Kato T, Ito K, Fukuda H, Schormann T, Zilles K. Functional delineation of the human occipito-temporal areas related to faces and scene processing: a PET study. Brain, 2000;123: 1903–1912

    PubMed  Google Scholar 

  • Neary D, Snowden JS, Mann DMA. Familial progressive aphasia: its relationship to other forms of lobar atrophy. J Neurol Neurosurg Psychiatry, 1993; 56: 1122–1125

    CAS  PubMed  Google Scholar 

  • Pantel J, Schröder J. “Posterior cortical atrophy”: ein neues Demenzsyndrom oder Sonderform des Morbus Alzheimer? Fortsehr Neurol Psychiatr, 1996; 64: 492–508

    CAS  Google Scholar 

  • Rosler A, Lanquillon S, Dippel O, Braune HJ. Impairment of facial recognition in patients with right cerebral infarcts quantified by computer aided “morphing”. J Neurol Neurosurg Psychiatry, 1997; 62: 261–264

    CAS  PubMed  Google Scholar 

  • Ross SJ, Graham N, Stuart-Green L, Prins M, Xuereb J, Patterson K, Hodges JR. Progressive biparietal atrophy: an atypical presentation of Alzheimer’s disease. J Neurol Neurosurg Psychiatry, 1996; 61: 388–395

    CAS  PubMed  Google Scholar 

  • Snowden JS, Gouldring PJ, Neary D: Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol, 1989;2: 167–182

    Google Scholar 

  • Snowden JS, Neary D, Mann DMA, Goulding PJ, Testa HJ. Progressive language disorder due to lobar atrophy. Ann Neurol, 1992a; 31: 174–183

    CAS  Google Scholar 

  • Snowden JS, Neary D, Mann DMA, Goulding PJ, Testa HJ. Progressive language disorder due to lob ar atrophy. Ann Neurol 1992b;31: 174–183

    CAS  Google Scholar 

  • Scheltens Ph, Hazenberg GJ, Lindeboom J, Valk J, Wolters EC. A case of progressive aphasia without dementia: “temporal” Pick’s disease? J Neurol Neurosurg Psychiatry, 1990;53:79–80

    CAS  PubMed  Google Scholar 

  • Scheltens P, Ravid R, Kamphorst W. Pathologic findings in a case of primary progressive aphasia. Neurology, 1994; 44:279–282

    CAS  PubMed  Google Scholar 

  • Takamura M. Prosopagnosia: a look at the laterality and specificity issues using evidence from neuropsychology and neurophysiology. The Harvard Brain, 1996; [spring]: 9–13

    Google Scholar 

  • Tyrrell PJ, Warrington EK, Frackowiak RSJ, Rossor MN. Progessive degeneration of the right temporal lobe studied with positron emission tomography. J Neurol Neurosurg Psychiatry, 1990; 53: 1046–1050

    CAS  PubMed  Google Scholar 

  • Tyrrell PJ, Warrington EK, Frackowiak RSJ, Rossor MN. Heterogeneity in progressive aphasia due to focal cortical atrophy. Brain, 1990; 113: 1321–1336

    PubMed  Google Scholar 

  • Tyrrell PJ, Warrington ER, Frackowiak RSJ, Rossor MN. Progressive degeneration of the right temporal lobe: studies with positron emission tomography. J Neurol Neurosurg Psychiatry, 1990; 53: 1046–1050

    CAS  PubMed  Google Scholar 

  • Adachi M, Hosoya T, Halm T, Yamaguchi K, Kawanami T. Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted imaging. AJNR Am J Neuroradiol, 1999; 20: 1500–1506

    CAS  PubMed  Google Scholar 

  • Albert ML, Feldman RG, Willis AL. The “subcortical dementia” of progressive nuclear palsy. J Neurol Neurosurg Psyschiatry, 1974; 37: 121–130

    CAS  Google Scholar 

  • Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 1997; 12:33–38

    CAS  PubMed  Google Scholar 

  • Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brucke T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm, 1998;105: 1213–1228

    CAS  PubMed  Google Scholar 

  • Bajaj NP, Shaw C, Warner T, RayChaudhuri K. The genetics of Parkinson’s disease and parkinsonian syndromes. J Neurol,1998;245:625–633

    CAS  PubMed  Google Scholar 

  • Ball B. De I’insanité dans le paralysie agitans. Encephale, 1882;2:22–32

    Google Scholar 

  • Barbeau A. The pathogenesis of Parkinson’s disease: a new hypothesis. Can Med Assoc J, 1962; 87: 802–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, Marder SR, Mintz J. MRI evaluation of brain iron in earlier-and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging, 1999; 17: 213–222

    CAS  PubMed  Google Scholar 

  • Bejanni BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P. Bilateral subthalamic stimulation for Parkinson’s disease by using three dimensional stereotactic magnetic resonance imaging and electrophysiologic guidance. J Neurosurg, 2000; 92: 615–625

    Google Scholar 

  • Bordet R, Broly F, Destee A. Debrisoquine hydroxylation genotype in familial forms of idiopathic Parkinson’s disease. Adv Neurol, 1996; 65: 97–100

    Google Scholar 

  • Brooks DJ. Functional imaging of Parkinson’s disease: is it possible to detect brain areas for specific symptoms? J Neural Transm Suppl, 1999; 56: 139–153

    CAS  PubMed  Google Scholar 

  • Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustarii B, Bjorklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S, Lindvall O. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue trated with lazaroids in Parkinson’s disease. Brain 2000; 123: 1380–1390

    PubMed  Google Scholar 

  • Cedarbaum JM, Gandy SE, McDowell E “Early” initiation of levodopa treatment does not promote the development of motor response fluctuations, dyskinesias, or dementia in Parkinson’s disease. Neurology, 1991; 41: 622–629

    CAS  PubMed  Google Scholar 

  • Chan P, Tanner CM, Hang X, Langston JW. Failure to find the alpha-synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson’s disease. Neurology,1998; 50: 513–514

    CAS  PubMed  Google Scholar 

  • Charcot JM. Lectrues on the diseases of the nervous system. London: The New Sydenham Society, 1877

    Google Scholar 

  • Colcher A, Simuni T. Clinical manifestations of Parkinson’s disease. Med Clin North Am, 1999; 83: 327–347

    CAS  PubMed  Google Scholar 

  • Diamond SG, Markham CH, Hoehn MM, McDowell FH, Muenter MD. Multicenter study of Parkinson mortality with early versus late treatment with L-dopa. Ann Neurol, 1987;22:8–12

    CAS  PubMed  Google Scholar 

  • Diederich NJ, Hilder C, Goetz CG, Keipes M, Hentges F, Metz H. Genetic variability of the CYP2D6 gene is not a risk factor for sporadic Parkinson’s disease. Ann Neurol, 1996;40:233–234

    Google Scholar 

  • DiMauro S. Mitochondrial involvement in Parkinson’s disease. Neurology, 1993;43:2170–2172

    CAS  PubMed  Google Scholar 

  • Fahn S. Parkinson disease, the effect of levodopa, and the L-DOPA trial. earlier vs later L-DOPA. Arch Neurol, 1999; 56:529–535

    CAS  PubMed  Google Scholar 

  • Freeman TB, Olanow CW, Hauser RA. Bilateral fetal nigral transplantation to the postcommissural putamen in Parkinson’s disease. Ann Neurol, 1995; 38: 379–388

    CAS  PubMed  Google Scholar 

  • Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology, 1999; 210: 759–767

    CAS  PubMed  Google Scholar 

  • Gibb WRG, Esiri MM, Lees AJ. Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain, 1985; 110: 1131–1153

    Google Scholar 

  • Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC. A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol, 1990; 27: 276–282

    CAS  PubMed  Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 1995; 45: 1138–1143

    CAS  PubMed  Google Scholar 

  • Grasbon-Frodl EM, Kosel S, Riess O, Muller U. Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson’s disease patients. Biochem Biophys Res Commun, 1999; 255: 749–752

    CAS  PubMed  Google Scholar 

  • Greenmyre JL, O’Brien CF. NMDA antagonists in the treatment of Parkinson’s disease. Arch Neurol, 1991; 48: 977–981.

    Google Scholar 

  • Hagell P, Crabb L, Pogarell O, Schrag A, Widner H, Brooks DJ, Oertel WH, Quinn NP, Lundvall O. Health-related quality of life following bilateral instrastriatal transplantation in Parkinson’s disease. Mov Disord 2000; 15: 224–229

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC. Protection against the dopaminergic neurotoxicity of MPTP by monoamine oxidase inhibitors. Nature, 1984; 311: 467–469

    CAS  PubMed  Google Scholar 

  • Hutchinson M, Raff U. Parkinson’s disease: a novel method for determining structural changes in the substantia nigra. J Neurol Neurosurg Psychiatry, 1999; 67: 815–818

    CAS  PubMed  Google Scholar 

  • Hutchinson M, Raff U. Structural changes of the substantia nigra in Parkinson’s disease as revealed by MR imaging. AJNR Am J Neuroradiol, 2000; 21: 697–701

    CAS  PubMed  Google Scholar 

  • Jankovic J, Cardoso F, Grossman RG, Hamilton J. Outcome after stereotaxic thalamotomy for parkinsonism, essential, and other types of tremor. Neurosurgery, 1995; 37:680–686

    CAS  PubMed  Google Scholar 

  • Johansson F, Malm J, Nordh E, Hariz M. Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry, 1997; 62: 125–132

    CAS  PubMed  Google Scholar 

  • Koller W, Phawa R, Busenbark K, et al. High-frequency uni-lateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol, 1997; 42: 292–299

    CAS  PubMed  Google Scholar 

  • Koller WC, Tolosa E. Current and emerging drug therapies in the management of Parkinson’s disease. Neurology, 1998;50: S1

    CAS  Google Scholar 

  • Kraft E, Winkelmann J, Trenkwalder C, Auer DP. Visual hallucinations, white matter lesions and disease severity in Parkinson’s disease. Acta Neurol Scand, 1999; 99: 362–367

    CAS  PubMed  Google Scholar 

  • Levivier M, Dethy SSS, Rodesch F, Peschanski M, Vandesteene A, David P, Wikleer D, Goldman S, Claes T, Biver F, Liesnard C, Goldman M, Hildebrand J, Brotchi J. Intracerebral transplantation of fetal mesencephalon for patients with advanced Parkinson’s disease: methodology and 6-month to 1-year follow-up in three patients. Stereotact Funct Neurosurg 1997; 69: 99–111

    CAS  PubMed  Google Scholar 

  • Lewy FH. Die Lehre vom Tonus und Bewegung. Berlin, Springer, 1923

    Google Scholar 

  • Louis ED, Goldman JE, Powers JM, Fahn S. Parkinsonian features of eight pathologically diagnosed cases of diffuse Lewy body disease. Mov Disord, 1995; 10(Suppl 2):188–194

    CAS  PubMed  Google Scholar 

  • Marek K, Seibyl JP, Zoghbi SS. J-CIT SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology, 1996; 46: 231–237.

    CAS  PubMed  Google Scholar 

  • Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG. Parkinson’s disease, pesticides, and glutathione transferase polymorphisms. Lancet, 1998; 352: 1344–1346

    CAS  PubMed  Google Scholar 

  • Messa C, Volonte MA, Fazio F, et al. Differential distributionof striatal [123I]beta-CIT in Parkinson’s disease and progressive supranuclear palsy, evaluated with singlephoton emission tomography. Eur J Nucl Med, 1998; 25:1270–1276

    CAS  PubMed  Google Scholar 

  • Nutt JG, Carter JH, Van Houten L, Woodward WR. Shortand long-duration responses to levodopa during the first year oflevodopa therapy. Ann Neurol, 1997; 42: 349–355.

    CAS  PubMed  Google Scholar 

  • Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation for the treatment of Parkinson’s disease. Trends Neurosci, 1996; 19: 102–108

    CAS  PubMed  Google Scholar 

  • Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol, 1989; 26: 719–723

    PubMed  Google Scholar 

  • Parkinson J. An essay on the shaking palsy. Med Classics, 1817; 10: 964–997

    Google Scholar 

  • Rinne UK. Early combination of bromocriptine and levodopa in the treatment of Parkinson’s disease: a five year follow-up. Neurology, 1987; 37: 826–828

    CAS  PubMed  Google Scholar 

  • Saunders-Pullman R, Gordon-Elliott J, Parides M, Fahn S, Saunders HR, Bressman S. The effect of estrogen replacement on early Parkinson’s disease. Neurology, 1999; 52: 1417–1421

    CAS  PubMed  Google Scholar 

  • Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, Quinn NP. Differentiation of atypical parkinsonian syndromes with routine MR. Neurology, 2000; 54: 697–7021

    CAS  PubMed  Google Scholar 

  • Smargiassi A, Mutti A, DeRosa A, DePalma G, Negrotti A, Calzetti S. A case-control study of occupational and environmental risk factors for Parkinson’s disease in the Emilia-Romagna region of Italy. Neurotoxicology, 1998; 19: 709–712

    CAS  PubMed  Google Scholar 

  • Speelman JD, Bosch DA. Resurgence of functional neurosurgery for Parkinson’s disease: a historical perspective. Mov Disord, 1998; 13: 582–588

    CAS  PubMed  Google Scholar 

  • Sutton JB, Couldwell W, Lew MF. Ventroposterior medial pallidotomy in patients with advanced Parkinson’s disease. Neurosurgery, 1995;36: 1112–1117

    CAS  PubMed  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, et al. Parkinson’s disease in twins: an etiologic study. JAMA, 1999; 281: 341–346

    CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Matsuo Y, Ichikawa Y, Watanabe Y. Genetic analysis of the CYP2D6 gene in patients with Parkinson’s disease. Metabolism, 1998; 47: 94–96

    CAS  PubMed  Google Scholar 

  • Vingerhoets G, van der Linden C, Lannoo E. Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 1999; 66: 297–304

    CAS  PubMed  Google Scholar 

  • Vitek JL, Hashimoto T, Kaneoke Y. Improvement of parkinsonian motor signs during electrical stimulation of the pallidum. Mov Disord, 1994; 9 (Suppl 1): 102

    Google Scholar 

  • Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G. T1 and T2 in the brain of healthy subjects, patients with Parkinson’s disease and patients with multiple system atrophy: relation to iron content. Radiology, 1999; 211: 489–495

    CAS  PubMed  Google Scholar 

  • Wang WW, Khajavi M, Patel BJ, Beach J, Jankovic J. The G209A mutation in the alpha-synuclein gene is not detected in familial cases of Parkinson’s disease in nonGreek and/or Italian populations. Arch Neurol, 1998; 55: 1521–1523

    CAS  PubMed  Google Scholar 

  • Wooten GF, Currie LJ, Bennett JP, Harrison MB, Trugman JM, Parker WD Jr. Maternal inheritance in Parkinson’s disease. Ann Neurol, 1997; 41: 265–268

    CAS  PubMed  Google Scholar 

  • Youdin MBH, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord, 1993; 8 (Suppl 1): 1–12

    Google Scholar 

  • Zareparsi S, Kay J, Camicioli R, et al. Analysis of the alpha-synuclein G209A mutation in familial Parkinson’s disease. Lancet, 1998;351:37–38

    CAS  PubMed  Google Scholar 

  • Blin J, Vidailhet MJ, Pillon B, Dubois F, Feve JR, Agid Y. Corticobasal degeneration: decreased and asymmetrical glucose consumption as studied with PET. Mov Disord, 1992;7:348–354

    CAS  PubMed  Google Scholar 

  • Brunt ERP, Van Weerden TW, Pruim J, Lakke JWPF. Unique myoclonic pattern in corticobasal degeneration. Mov Disord, 1995; 10: 132–142

    CAS  PubMed  Google Scholar 

  • Eidelberg D. Differential diagnosis of Parkinson’s disease with [18F]fluorodesoxyglucose and PET. Mov Disord, 1996; 11: 349

    Google Scholar 

  • Eidelberg D, Moeller JR, Sidtis JJ, Dhawar V, Strother SC, Pahn S, Rottenberg DA. Cortico-dentato-nigral degeneration: metabolic asymmetries studied with 18F-PDG and PET. Neurology, 1989; 39 (Suppl 1): 164–169

    Google Scholar 

  • Doi T, Iwasa K, Makifuchi T, Takamori M. White matter hyperintensities on MRI in a patient with corticobasal degeneration. Acta Neurol Scand, 1999; 99: 199–201

    CAS  PubMed  Google Scholar 

  • Gallucci M, Bonamini M, Catalucci A, Leuzzi V, Micheli C, Caulo M, Scarnati E. MRI helps in the early diagnosis of corticobasal degeneration. Riv Neuroradiol, 1998: 11 (Suppl 2): 13–14

    Google Scholar 

  • Katagaki H, Hirono N, Ishii K, Mori E. Corticobasal degeneration: evaluation of cortical atrophy by means of hemispheric surface display generated with MR images. Radiology, 2000; 216: 31–38

    Google Scholar 

  • Lang AE, Maragonore D, Marsden CD, Tanner C. Movement disorder society symposium on corticobasal ganglionic degeneration and its relationship to other asymmetrical cortical syndromes. Mov Disord, 1996; 11: 346–357

    Google Scholar 

  • Lippa CP, Smith TW, Fonteau N. Corticonigral degeneration with neuronal achromasia: a clinicopathologic study of two cases. J Neurol Sci, 1990; 98: 301–310

    CAS  PubMed  Google Scholar 

  • Pollanen MS, Ksiezak-Reding H. The emerging molecular pathology of corticobasal ganglionic degeneration. Mov Disord,1996;11:350

    Google Scholar 

  • Rebeiz JJ, Kolodny EH, Richardson EP. Cortico-dentato-nigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans Am Neurol Assoc 1967;92:23–26

    CAS  PubMed  Google Scholar 

  • Revesz T, Daniel SE. Corticobasal degeneration. In: Markesbery WR, ed. Neuropathology of dementing disorders. London: Edward Arnold, 1998: 257–267

    Google Scholar 

  • Rinne JO, Lee MS, Thompson PD, Marsden CD. Corticobasal degeneration: a clinical study of 36 cases. Brain, 1994; 117: 1183–1196

    PubMed  Google Scholar 

  • Tokomaru AM, O’uchi T, Kuru Y, Maki T, Murayama S, Horochi Y. Corticobasal degeneration: MR with histopathological comparison. AJNR Am J Neuroradiol, 1996; 17: 1849–1852

    Google Scholar 

  • Aldrich MS, Foster NL, White RF, Bluemlein L, Prokopowicz G. Sleep abnormalities in progressive supranuclear palsy. Ann Neurol, 1989; 25: 577–581

    CAS  PubMed  Google Scholar 

  • Anouti A, Schmidt K, Lyons KE, et al. Normal distribution of apolipoprotein E alleles in progressive supranuclear palsy. Neurology, 1996; 46: 1156–1157

    CAS  PubMed  Google Scholar 

  • Barclay CL, Bergeron C, Lang AE. Arm levitation in progressive supranuclear palsy. Neurology, 1999; 52: 879–882

    CAS  PubMed  Google Scholar 

  • Bigio EH, Brown DF, White CL. Progressive supranuclear palsy with dementia: cortical pathology. J Neuropathol Exp Neurol, 1999; 58: 359–364

    CAS  PubMed  Google Scholar 

  • Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology, 1997;49: 1284–1288

    CAS  PubMed  Google Scholar 

  • Brooks DJ. Positron emission tomographic studies of the subcortical degenerations and dystonia. Semin Neurol, 1989;9:351–359

    CAS  PubMed  Google Scholar 

  • Caparros-Lefevbre D, Elbaz A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Lancet, 1999; 354:281–286

    Google Scholar 

  • Chambers CB, Lee JM, Troncoso JC, Reich S, Muma NA. Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease. Ann Neurol, 1999; 46: 325–332

    CAS  PubMed  Google Scholar 

  • Conrad E, Andreadis A, Trojanowski JQ, et al. Genetic evidence for the involvement of tau in progressive supra-nuclear palsy. Ann Neurol, 1997; 41: 277–281

    CAS  PubMed  Google Scholar 

  • Cordato NJ, Halliday GM, Harding AJ, Hely MA, Morris JG. Regional brain atrophy in progressive supranuclear palsy and Lewy body disease. Ann Neurol, 2000; 47: 718–728

    CAS  PubMed  Google Scholar 

  • Davie CA, Barker GJ, Machado C, Miller DH, Lees AJ. Proton magnetic resonance spectroscopy in Steele-Richardson-Olszewski syndrome. Mov Disord, 1997; 12: 767–771

    CAS  PubMed  Google Scholar 

  • Davis PH, Golbe LI, Duvoisin RC, Schoenberg BS. Risk factors for progressive supranuclear palsy. Neurology, 1988; 38: 1546–1552

    CAS  PubMed  Google Scholar 

  • Golbe LI, Davis PH, Lepore FE. Eyelid movement abnormalities in progressive supranuclear palsy. Mov Disord, 1989;4:297–302

    CAS  PubMed  Google Scholar 

  • Golbe LI, Davis PH, Schoenberg BS, Duvoisin RC. Prevalence and natural history of progressive supranuclear palsy. Neurology, 1988; 38: 1031–1034

    CAS  PubMed  Google Scholar 

  • Golbe LI, Rubin RS, Cody RP, et al. Follow-up study of risk factors in progressive supranuclear palsy. Neurology, 1996;47: 148–154

    CAS  PubMed  Google Scholar 

  • Grafman J, Litvan I, Gomez C, Chase TN. Frontal lobe function in progressive supranuclear palsy. Arch Neurol, 1990;47:553–558

    CAS  PubMed  Google Scholar 

  • Guillain G, Mollaret P. Deux cas de myoclonies synchrones et rhythmées vélo-pharngo-laryngo-oculo-diaphragmatiques. Rev Neurol, 1931; 2: 245–266

    Google Scholar 

  • Habert MO, Smampinato U, Mas JL, et al. A comparative technetium-99m hexamethylpropylene amine oxime SPET [sic] study in different types of dementia. Eur J Nucl Med, 1991; 18:3–11

    CAS  PubMed  Google Scholar 

  • Ishizawa K, Lin WL, Tiseo P, Honer WG, Davies P, Dickson DW. A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J Neuropathol Exp Neurol, 2000; 59: 513–524

    CAS  PubMed  Google Scholar 

  • Jackson JA, Jankovic J, Ford J. Progress supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol, 1983; 13: 273–278

    CAS  PubMed  Google Scholar 

  • Jankovic J. Progressive supranuclear palsy: clinical and pharmacologic update. Neurol Clin, 1984; 2: 473–486

    CAS  PubMed  Google Scholar 

  • Jellinger K, Riederer P, Tomonaga M. Progressive supranuclear palsy: clinico-pathological and biochemical studies. J Neural Transm Suppl 1980; 16: 111–128

    Google Scholar 

  • Litvan I, Agid Y, eds. Progressive supranuclear palsy. New York: Oxford University Press, 1992

    Google Scholar 

  • Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Growdon JH. Clinical research criteria for the diagnosis of progressive supra-nuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology, 1996;47: 1–9

    CAS  PubMed  Google Scholar 

  • Litvan I, Gomez C, Atack JR, Gillespie M, Kask AM, Mouradian MM, Chase TN. Physostigmine treatment of progressive supranuclear palsy. Ann Neurol, 1989; 26: 404–407

    CAS  PubMed  Google Scholar 

  • Maher ER, Lees AJ. The clinical features and natural history of the Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology, 1986; 36: 1005–1008

    CAS  PubMed  Google Scholar 

  • Pfaffenbach DD, Layton DD, Kearns TP. Ocular manifestations in progressive supranuclear palsy. Am J Ophthalmol, 1972; 74: 1179–1184

    CAS  PubMed  Google Scholar 

  • Rojo A, Pernaute RS, Fontan A, et al. Clinical genetics of familial progressive supranuclear palsy. Brain, 1999; 122: 1233–1245

    PubMed  Google Scholar 

  • Savoiardo M, Strada L, Girotti F, D’Incerti L, Ibena M, Soliveri P, Balzarini L. MR imaging in progressive supranuclear palsy and Shy-Drager syndrome. J Comput Assist Tomogr, 1989;13:555–560

    CAS  PubMed  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet, 1999; 354: 1771–1775

    CAS  PubMed  Google Scholar 

  • Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, Quinn NP. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology, 2000; 54: 697–702

    CAS  PubMed  Google Scholar 

  • Soliveri P, Monza D, Paridi D, Radice D, Grisoli M, Testa D, Savoiardo M, Girotti F. Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology, 1999; 53:502–507

    CAS  PubMed  Google Scholar 

  • Sonies BC. Swallowing and speech disturbances. In: Litvan I, Agid Y, eds. Progressive supranuclear palsy: clinical and research approaches. New York: Oxford University Press, 1992

    Google Scholar 

  • Stanford PM, Halliday GM, Brooks WS, Kwok JB, Storey CE, Creasey H, Morris JG, Fyulham MJ, Schofield PR. Progressive supranuclear palsy pathology caused by a novel mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain, 2000;123:880–893

    PubMed  Google Scholar 

  • Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum, with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol, 1964; 10: 333–359

    CAS  PubMed  Google Scholar 

  • Tolosa E, Duvoisin R, Cruz-Sanchez FF, eds. Progressive supranuclear palsy: diagnosis, pathology and therapy. J Neural Transm Suppl, 1994; 42: 15–31

    Google Scholar 

  • Yagishita A, Oda M. Progressive supranuclear palsy: MRI and pathological findings. Neuroradiology, 1996; 38: 60–66

    Google Scholar 

  • Winikates J, Jankovic J. Vascular progressive supranuclear palsy. J Neural Transm Suppl, 1994; 42: 189–201

    CAS  PubMed  Google Scholar 

  • Abe H, Yagishita S, Amano N, Iwabuchi K, Hasegawa K, Kowa K. Argyrophilic glial intracytoplasmic inclusions in multiple system atrophy: immunocytochemical and ultrastructural study. Acta Neuropathol, 1992; 84: 273–277

    CAS  PubMed  Google Scholar 

  • Adams RD, van Bogaert L, van der Eecken H. Striato-nigral degeneration. J Neuropathol Exp Neurol, 1964; 23: 584–608

    CAS  PubMed  Google Scholar 

  • Antonini A, Schwartz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord, 1997; 12:33–38

    CAS  PubMed  Google Scholar 

  • Arima K, Murayama S, Mukoyama M, Inose T. Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. I. Neuronal cytoplasmic inclusions. Acta Neuropathol, 1992; 3: 453–460

    Google Scholar 

  • Barbiroli B, Martinelli P, Patuelli A, Lodi R, Iotti S, Cortelli P, Montagna P. Phosphorus magnetic resonance spectro-scopy in multiple system atrophy and Parkinson’s disease. Mov Disord, 1999; 14: 430–435

    CAS  PubMed  Google Scholar 

  • Beck RO, Betts CD, Fowler CJ. Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol, 1994: 151: 1336–1341

    CAS  PubMed  Google Scholar 

  • Ben-Shlomo Y, Wenning GK, Tison F, Quinn NP. Survival of patients with pathologically proven multiple system atrophy: a meta-analysis. Neurology, 1997; 48: 384–393

    CAS  PubMed  Google Scholar 

  • Brooks DI, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, Lees AI, Marsden CD, Bannister R, Frackowiak RS. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol, 1992;31: 184–192

    CAS  PubMed  Google Scholar 

  • Brucke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober C, Muller C, Podreka I. Measurement of the doraminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT: correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neurol Transm Suppl, 1997;50:9–24

    CAS  Google Scholar 

  • Déejerine I, Thomas A. L’atrophie olivopontocerebelleuse. Nouv Iconogr Salpet, 1900; 13: 330–370

    Google Scholar 

  • Dickson DW, Lin W, Liu WK, Yen SH. Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol, 1999; 9:721–731

    CAS  PubMed  Google Scholar 

  • Frumkin H. Multiple system atrophy following chronic carbon disulfide exposure. Environ Health Perspect, 1998; 106: 611–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gai WP, Power IH, Blumbergs PC, Blessing WW. Multiple-system atrophy: a new alpha-synuclein disease? Lancet, 1998;352:547–548

    CAS  PubMed  Google Scholar 

  • Gilman S, Low Pa Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Robertson D, Schatz I, Wenning GK. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci, 1999a; 163: 94–98

    CAS  Google Scholar 

  • Gilman S, Koeppe R, Junck L, Little R, Kluin KJ, Heumann M, Martorello S, Johanns J. Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol, 1999b; 45:769–777

    CAS  Google Scholar 

  • Graham JG, Oppenheimer DR. Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry, 1969; 32: 28–34

    CAS  PubMed  Google Scholar 

  • Harding AE. Commentary: olivopontocerebellar atrophy is not a useful concept. In: Marsden CD, Fahn S, eds. Movement disorders 2. London: Butterworth, 1987: 269–271

    Google Scholar 

  • Horimoto Y, Aiba I, Yasuda T, Ohkawa Y, Katayama T, Yokokawa Y, Goto A, Ito Y. Cerebral atrophy in multiple system atrophy by MRI. J Neurosci, 2000; 173: 109–112

    CAS  Google Scholar 

  • Hughes AJ, Colosimo C, Kleedorfer B, Daniel SE, Lees AJ. The dopaminergic response in multiple system atrophy. J Neurol Neurosurg Psychiatry, 1992; 55: 1009–1013

    CAS  PubMed  Google Scholar 

  • Jankovic J, Gilden JL, Hiner BC, et al. Neurogenic orthostatic hypotension: a double-blind placebo-controlled study with midodrine. Am J Med, 1993; 93: 38–48

    Google Scholar 

  • Kato S, Nakamura H, Hirano A, Ito H, Llena JF, Yen SH. Argyrophilic ubiquitinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy). Acta Neuropathol, 1991; 82:488–493

    CAS  PubMed  Google Scholar 

  • Kim GM, Kim SE, Lee WY. Preclinical impairment of the striatal dopamine transporter system in sporadic olivo-pontocerebellar atrophy: studied with [123I]ßCIT and SPECT. Eur Neurol, 2000; 43: 23–29

    CAS  PubMed  Google Scholar 

  • Kirby R, Fowler C, Gosling F, Bannister R. Urethro-vesical dysfunction in progressive autonomic failure with multiple system atrophy. J Neurol Neurosurg Psychiatry, 1986; 9:554–562

    Google Scholar 

  • Konagaya M, Konagaya Y, Iida M. Clinical and magnetic resonance imaging study of extrapyramidal symptoms in multiple system atrophy. J Neurol Neurosurg Psychiatry, 1994;57:1528–1531

    CAS  PubMed  Google Scholar 

  • Konagaya M, Sakai M, Matsuoka Y, Goto Y, Yoshida M, Hashizume Y. Pathological correlate of the slitlike changes on MRI at the putaminal margin in multiple system atrophy. J Neurol, 1999; 246: 142–143

    CAS  PubMed  Google Scholar 

  • Kraft E, Schwarz J, Trenkwalder C, Vogl T, Pfluger T, Oertel WH. The combination of hypointense and hyperintense signal changes on T2-weighted magnetic resonance imaging sequences: a specific marker of multiple system atrophy? Arch Neurol, 1999; 56: 225–228

    CAS  PubMed  Google Scholar 

  • Munschauer FE, Loh L, Bannister R, Newsom-Davis J. Abnormal respiration and sudden death during sleep in multiple system atrophy with autonomic failure. Neurology 1990;40:677–679

    CAS  PubMed  Google Scholar 

  • Murayama S, Arima K, Nakazato Y, Satoh J, Oda M, Inose T. Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. II. Oligodendroglial cytoplasmic inclusions. Acta Neuropathol, 1992; 84: 32–38

    CAS  PubMed  Google Scholar 

  • Papp M, Kahn J, Lantos P. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci, 1989; 94: 79–100

    CAS  PubMed  Google Scholar 

  • Papp ML, Lantos PL. The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain, 1994; 117: 235–243

    PubMed  Google Scholar 

  • Parati EA, Fetoni V, Geminiani GC, et al. Response to L-DOPA in multiple system atrophy. Clin Neuropharmacol, 1993;16: 139–144

    CAS  PubMed  Google Scholar 

  • Plazzi G, Corsini R, Provini F, et al. REM sleep behavior disorders in multiple system atrophy. Neurology, 1997; 48:1094–1097

    CAS  PubMed  Google Scholar 

  • Polinsky RJ. Shy-Drager syndrome. In: Jankovic J, Tolosa E, eds. Parkinson’s disease and movement disorders. Baltimore: Williams and Wilkins, 1993: 191–204

    Google Scholar 

  • Quinn NP, Luthert P, Honavar M, Marsden CD. Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Mov Disord, 1989; 4: 85–88

    CAS  PubMed  Google Scholar 

  • Quinn NP, Wenning GK. Multiple system atrophy. Adv Neurol, 1996; 69: 413–419

    CAS  PubMed  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross sectional study. Lancet, 1999; 354: 1771–1775

    CAS  PubMed  Google Scholar 

  • Schrag A, Quinn N. Disorders of the basal ganglia and their modern management. J. R Coll Physicians Lond 1999; 33:323–327

    CAS  PubMed  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet, 1999; 354: 1771–1775

    CAS  PubMed  Google Scholar 

  • Schulz JB, Skalej M, Wedekind D, Luft AR, Abele M, Voigt K, Dichgans J, Klockgether T. Magnetic resonance imaging based volumetry differentiates Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol, 1999; 45: 65–74

    CAS  PubMed  Google Scholar 

  • Shy GM, Drager GA. A neurological syndrome associated with orthostatic hypotension: a clinical-pathological study. Arch Neurol, 1960; 2: 511–512

    CAS  PubMed  Google Scholar 

  • Siemers E. Multiple system atrophy. Med Clin North Am, 1999;83:381–392

    CAS  PubMed  Google Scholar 

  • Singer C. Urinary dysfunction in Parkinson’s disease. Clin Neurosci, 1998; 5: 78–86

    CAS  PubMed  Google Scholar 

  • Terakawa H, Abe K, Watanabe Y, Nakamura M, Fujita N, Hirakubi N, Yanagihara T. Proton magnetic resonance spectroscopy in patients with sporadic cerebellar degeneration. J Neuroimaging, 1999; 9: 72–77

    CAS  PubMed  Google Scholar 

  • van der Eecken H, Adams RD, van Bogaert L. Striopallidalnigral degeneration: a hitherto undescribed lesion in paralysis agitans. J Neuropathol Exp Neurol, 1960; 19: 159–161

    Google Scholar 

  • Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G. T1 and T2 in the brain of healthy subjects, patients with Parkinson’s disease, and patients with multiple system atrophy: relation to iron content. Radiology, 1999; 211; 489–495

    CAS  PubMed  Google Scholar 

  • Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP. Clinical features and natural history of multiple system atrophy: an analysis of 100 cases. Brain, 1994; 117: 835–845

    PubMed  Google Scholar 

  • Wenning GK, Kraft E, Beck R, et al. Cerebellar presentation of multiple system atrophy. Mov Disord, 1997; 12: 115–117

    CAS  PubMed  Google Scholar 

  • Ikeuchi T, Koide R, Onodera O, Tanaka H, Oyake M, Takano H, Tsuji S. Dentatorubral-pallidoluysian atrophy (DRPLA): molecular basis for wide clinical features of DRPLA. Clin Neurosci, 1995; 3: 23–27

    CAS  PubMed  Google Scholar 

  • Koide R, Onodera O, Ikeudu T, Kondo R, Tanada H, Tokiguchi S, Tonmoda A, Miiko T, Isa F, Beppu H, Shimuzi N, Watanada Y, Horikawa Y, Dhenokata T, Hirota K, Ishikawa A, Tsuji S. Atrophy of the cerebellum and brain stem in dentatorubral-pallidoluysian atrophy: influence of GAG repeat size on MR findings. Neurology, 1997; 49:1605–1612

    CAS  PubMed  Google Scholar 

  • Melberg A, Dahl N, Hetta J, Valind S, Nennesmo I, Lundberg PO, Raininko R. Neuroimaging study in autosomal dominant cerebellar ataxia, deafness and narcolepsy. Neurology, 1999; 53: 2190–2192

    CAS  PubMed  Google Scholar 

  • Miyazaki M, Hashimoto T, Yoneda Y, Tayama M, Harada M, Miyoshi H, Kawano N, Murayama N, Kondo I, Kuroda Y. Proton magnetic resonance spectroscopy on childhoodonset dentatorubral-pallidoluysian atrophy (DRPLA) Brain Dev, 1996; 18: 142–145

    CAS  PubMed  Google Scholar 

  • Munoz E, Mila M, Sanchez A, Latorre P, Ariza A, Codina M, Ballesta F, Tolosa E. Dentatorubropallidoluysian atrophy in a Spanish family: a clinical radiological, pathological and genetic study. J Neurol Neurosurg Psychiatry, 1999; 67: 811–814

    CAS  PubMed  Google Scholar 

  • Smith JK, Gonda VE, Malamud N. Unusual form of cerebellar ataxia: combined dentatorubral and pallidoluysian degeneration. Neurology, 1958; 13: 266–269.

    Google Scholar 

  • Smith JK. Dentatorubropallidoluysian atrophy. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology. Amsterdam: North-Holland, 1975: 519–534

    Google Scholar 

  • Tomiyasu H, Yoshii F, Ohnuki I, Ikeda JE, Shinohara Y. The brainstem and thalamic lesions in dentatorubral-pallidoluysian atrophy: an MRI study. Neurology, 1998; 50:1887–1890

    CAS  PubMed  Google Scholar 

  • Uyama E, Kondo I, Uchino M, Fukushima T, Murayama N, Kwano A, Inokuchi N, Ohthari Y, Ando M. Dentatorubral-pallidoluysian atrophy (DRPLA): clinical, genetic and neuroradiologic studies in a family. J Neurol Sci, 1995;130: 146–153

    CAS  PubMed  Google Scholar 

  • Warner TT, Lennox GC, Janota I, Harding E. Autosomaldominant dentatorubropallidoluysian atrophy in the United Kingdom. Mov Disord, 1994; 3: 289–296

    Google Scholar 

  • Warner TT, Williams LD, Walker RWH, Flinter F, Robb SA, Bundey SE, Honavar M, Harding AE. A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol, 1995; 37:452–459

    CAS  PubMed  Google Scholar 

  • Yoshii F, Tomiyashu H, Shinohara Y. Fluid attenuation inversion recovery (FLAIR) images of dentatorubral-pallidoluysian atrophy: a case report. J Neurol Neurosurg Psychiatry, 1998; 65: 396–399

    CAS  PubMed  Google Scholar 

  • Duncan MRW, Steele JC, Kopin IJ, Markey SP. 2-Amino-3-methylaminopropanoic acid (BMAA) in Cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam. Neurology, 1990; 40:767–772

    CAS  PubMed  Google Scholar 

  • Durlach J, Bac P, Durlach V, Bara M, Guiet-Bara A. Are agerelated neurodegenerative diseases linked with various types of magnesium depletion? Magn Reson, 1997; 10:339–353

    CAS  Google Scholar 

  • Hirano A, Kurland LT, Krooth RS, Lesell LS. Parkinson-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain, 1961a; 84: 642–661

    CAS  Google Scholar 

  • Hirano A. Malamud N, Kurland LT. Parkinson-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain, 1961b; 84: 662–679

    CAS  Google Scholar 

  • Kato S, Hirano A, Liena JF, Yen SH. Ultrastructural identification of neurofibrillary tangles in the spinal cords in Guamanian ALS and parkinsonism-dementia complex on Guam. Acta Neuropathol, 1992; 53: 277–282

    Google Scholar 

  • Kurlans LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. I. Preliminary report on geographic distribution, with special reference to the Mariana islands, including clinical and pathologic observations. Neurology, 1954; 4: 355–378

    Google Scholar 

  • Lillienfeld DE, Peil DP, Olanon CW. Guam neurodegeneration. In: Carnie DB, ed. Neurodegenerative diseases. Philadelphia: WB Saunders, 1994: 895–898

    Google Scholar 

  • McGeer PL, Schwab C, McGeer EG, Haddock RL, Steele JC. Familial nature and continuing morbidity of the amyotrophic lateral sclerosis-parkinsonism-dementia complex of Guam. Neurology, 1997; 49: 400–409

    CAS  PubMed  Google Scholar 

  • Perl DP, Good PF. Aluminum, Alzheimer’s disease, and the olfactory system. Ann N YAcad Sci, 1991; 640: 8–12

    CAS  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC. Guam amyotrophic lateral sclerosisparkinsonism-dementia linked to a plant excitant neurotoxin. Science, 1987; 237: 517–522

    CAS  PubMed  Google Scholar 

  • Yasui M, Ota K, Garruto RM. Concentration of zinc and iron in the brains of Guamanian patients with ALS and parkinsonism-dementia. Neurotoxicology, 1993; 14: 445–450

    CAS  PubMed  Google Scholar 

  • Albert ML, Feldman RG, Willis AL. The “subcortical dementia” of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry, 1974; 37: 121–130

    CAS  PubMed  Google Scholar 

  • Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE, Bylsma FW, Pearlson GD, Ross CA. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology, 1997; 48: 394–399

    CAS  PubMed  Google Scholar 

  • Backman L, Robins-Wahlin TB, Lundin A, Ginovart N, Farde L. Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain, 1997; 120:2207–2217

    PubMed  Google Scholar 

  • Beal MF. Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases. Biofactors, 1999;9:261–266

    CAS  PubMed  Google Scholar 

  • Besret L, Kendall AL, Dunnett SB. Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington’s disease. J Anat, 2000; 196: 597–607

    PubMed  Google Scholar 

  • Dose M, Lange HW. The benzamide tiapride: treatment of extrapyramidal motor and other clinical syndromes. Pharmacopsychiatry, 2000; 33: 19–27

    CAS  PubMed  Google Scholar 

  • Fink JJJS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, Penn R, Starr P, Van Horne C, Kott HS, Dempsey PK, Fischman AJ, Raineri R, Manhart C, Dinsmore J, Isacson O. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant, 2000; 9: 273–278

    CAS  PubMed  Google Scholar 

  • Furtado S, Suchowersky O, Rewcastle B, Graham L, Klimek ML, Garber A. Relation between trinucleotide repeats and neuropathological changes in Huntington’s disease. Ann Neurol, 1996; 39: 132–136

    CAS  PubMed  Google Scholar 

  • Harms L, Meierkord H, Timm G, Pfeiffer L, Ludolph AC. Decreased N-acetyl aspartate/choline ratio in the frontal lobe of patients with Huntington’s disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry, 1997; 62: 27–30

    CAS  PubMed  Google Scholar 

  • Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J. Reduced basal ganglia blood flow and volume in presymptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 1999; 122: 1667–1678

    PubMed  Google Scholar 

  • Jenkins BG, Koroshetz WI, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized proton spectroscopy. Neurology, 1993; 43: 2689–2695

    CAS  PubMed  Google Scholar 

  • Kowall NW, Ferrante RJ. Huntington’s disease. In: Markesbery WR, ed. Neuropathology of dementing disorders. London: Edward Arnold, 1998: 219–256

    Google Scholar 

  • Kremer B, Clark CM, Almquist EW, Raymond LA, Graf P, Jacova C, Hardy MA, Snow B, Martin W, Hayden MR. Influence of lamotrigine on progression of early Huntington’s disease: a randomized clinical trial. Neurology, 1999;53: 1000–1011

    CAS  PubMed  Google Scholar 

  • Mapother E. Mental symptoms in association with chorei-form disorders. J Mental Sci 1911; 57: 641–661

    Google Scholar 

  • Muller-Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabis in movement disorders. Forsch Komplementarmed, 1999;6:23–27

    PubMed  Google Scholar 

  • Nance MA. Huntington’s disease: another chapter rewritten (invited editorial). Am J Hum Genet, 1996; 59: 1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nance MA. Genetic testing of children at risk for Huntington’s disease. Neurology, 1997; 49: 1048–1053

    CAS  PubMed  Google Scholar 

  • Rosas HD, Korohetz WJ, Jenkins BG, Chen YI, Hayden DL, Beal MF, Cudkowicz ME. Mov Disord, 1999; 14: 326–330

    CAS  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Garcia-Segura JM, del Barrio Alba A, Viano J, de Yebenes JG. Clinical correlation of striatal 1H MRS changes in Huntington’s disease. Neurology, 1999; 53:806–812

    CAS  PubMed  Google Scholar 

  • Ardila A, Roselli M, Arvizu L, Kuljis RO. Alexia and agraphia in posterior cortical atrophy. Neuropsychiatry Neuropsychol Behav Neurol, 1997; 10: 52–59

    CAS  PubMed  Google Scholar 

  • Benson DF. Posterior cortical atrophy: a new clinical entity, or Alzheimer’s disease? In reply. Arch Neurol, 1989; 46:843–844

    Google Scholar 

  • Benson DF, Davis RJ, Snyder BD. Posterior cortical atrophy. Arch Neurol, 1988; 45: 789–793

    CAS  PubMed  Google Scholar 

  • Bergmann M, Gullotta F, Weitbrecht WU. Progressive subkortikale Gliose. Fortschr Neurol Psychiatr, 1991; 59:328–334

    CAS  PubMed  Google Scholar 

  • Brun A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch Gerontol Geriatr, 1987; 6: 193–208

    CAS  Google Scholar 

  • Constantinidis J, Richard J, Tissot R. Pick’s disease: histological and clinical correlations. Eur Neurol, 1974; 11: 208–217

    CAS  PubMed  Google Scholar 

  • Englund E, Brun A. Frontal lobe degeneration of non-Alzheimer type. IV. White matter changes. Arch Gerontol Geriatr, 1987; 6: 235–243

    CAS  Google Scholar 

  • Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M, Lanska DJ, Markesbery WR, Wilhelmsen KC, Dickson DW, Petersen RB, Gambetti P. Tau gene mutation in familial progressive subcortical gliosis. Nature Med, 1999; 5: 1–4

    Google Scholar 

  • Gustafson L. Frontal lobe degeneration of non-Alzheimer type. II. Clinical picture and differential diagnosis. Arch Gerontol Geriatr, 1987; 6: 209–223

    CAS  Google Scholar 

  • Khoubesserian P, Davous P, Bianco C, Puyirat J. Demence familiale de type Neumann (gliose sous corticale). Rev Neurol (Paris), 1985; 141: 706–712

    CAS  Google Scholar 

  • Lanska DJ, Lanska MJ, Whitehouse PJ, Gambetti P. Familial progressive subcortical gliosis. Neurology, 1989; 39 (Suppl 1): 252

    Google Scholar 

  • Lanska DJ, Currier RD, Cohen M, Gambetti P, Smith EE, Bebin J, Jackson JF, Whitehouse PJ, Markesberry WR. Familial progressive subcortical gliosis. Neurology, 1994; 44: 1633–1643

    CAS  PubMed  Google Scholar 

  • Lanska DJ, Markesbery WR, Cochran E, Bennett D, Lanska MJ, Cohen M. Late-onset sporadic progressive subcortical gliosis. J Neurol Sci, 1998; 157: 143–147

    CAS  PubMed  Google Scholar 

  • Mann DM. Dementia of frontal type and dementia with subcortical gliosis. Brain Pathol, 1998; 8: 325–338

    CAS  PubMed  Google Scholar 

  • Moosey J, Martinez J, Hanin I, Rao G, Yonas H, Boller F. Thalamic and subcortical gliosis with dementia. Arch Neurol, 1987: 44; 510–513

    Google Scholar 

  • Neumann MA, Cohn R. Progressive subcortical gliosis, a rare form of pre-senile dementia. Brain, 1967; 90: 405–427

    CAS  PubMed  Google Scholar 

  • Petersen RB, Tabaton M, Chen SG, et al. Familial progressive subcortical gliosis: presence of prions and linkage to chromosome 17. Neurology, 1995; 45: 1062–1067

    CAS  PubMed  Google Scholar 

  • Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol, 1998; 43: 815–825

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol, 1998; 8: 387–402

    CAS  PubMed  Google Scholar 

  • Tabaton M, Peterson RB, Monari L, et al. Progressive subcortical gliosis: a new prion protein disease. Soc Neurosci Abstr, 1993; 19: 842–844

    Google Scholar 

  • Torack RM, Morris JC. Mesolimbocortical dementia: a clinicopathologic case study of a putative disorder. Arch Neurol, 1986;43: 1074–1078

    CAS  PubMed  Google Scholar 

  • Verity A, Wechsler AF. Progressive subcortical gliosis of Neumann: a clinicopathologic study of two cases with review. Arch Gerontol Geriatr, 1987; 6: 245–261

    CAS  PubMed  Google Scholar 

  • Will RG, Lees AJ, Barnard RO. A case of progressive subcortical gliosis presenting clinically as Steele-Richardson-Olszewski syndrome. J Neurol Neurosurg Psychiatry, 1988;51: 1224–1227

    CAS  PubMed  Google Scholar 

  • Balm MM, Paiche P. Abnormal diffusion weighted magnetic resonance images in Creutzfeldt-Jakob disease. Arch Neurol, 1999;56:577–583

    Google Scholar 

  • Bruher H, Weber T, Thorwith V, Frahm J. In vivo monitoring of neuronal loss in Creutzfeld-Jakob disease by proton magnetic resonance spectroscopy. Lancet 1991; 337:1610–1611

    Google Scholar 

  • Carrilho PM, Caramelli P, Albrecht S, Zatz M, LeBlanc A. Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol, 1997; 42:138–146

    PubMed  Google Scholar 

  • Chesebro B. BSE and prions: uncertainties about the agent. Science, 1998;279:42–43

    CAS  PubMed  Google Scholar 

  • Demaerel P, Heiner L, Robberecht W, Sciot R, Wilms G. Diffusion weighted MRI in sporadic Creutzfeldt-Jakob disease. Neurology, 1999; 52: 205–208

    CAS  PubMed  Google Scholar 

  • Esiri MM, Gordon WI, Coolinge J, Patten JS. Peripheral neuropathy in Creutzfeldt-Jakob disease. Neurology, 1997; 48:784

    CAS  PubMed  Google Scholar 

  • Finkestaedt M, Szudra A, Zerr I, Poser S, Hise JH, Stoebner JM, Weber T. MR imaging of Creutzfeldt-Jakob disease. Radiology, 1996; 199:793–798

    Google Scholar 

  • Gabizon R, Telliong G, Meiner Z, Halimi M, Kahana I, Prusiner SB. Insoluble wild-type and protease resistant mutant prion protein in brains of patients with inherited prion disease. Nature Med, 1996; 2: 59–64

    CAS  PubMed  Google Scholar 

  • Gajdusek DC, Zigas V. Degenerative diseases of the central nervous system in New Guinea: the endemic occurrence of kuru in the native population. N Engl J Med, 1957; 257:974–978

    CAS  PubMed  Google Scholar 

  • Gibbs CJ, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science, 1968; 161:388–389

    PubMed  Google Scholar 

  • Gold M, Rojiani A, Murtaugh R. A 66-year-old woman with a rapidly progressing dementia and basal ganglia involvement. J Neuroimaging, 1997; 7: 171–175

    CAS  PubMed  Google Scholar 

  • Graham GD, Petroff OA, Blamire AM, Raikowska G, Goldman-Rakic P, Prichard JW. Proton magnetic resonance spectroscopy in Creutzfeldt-Jakob disease. Neurology, 1993;43:2065–2068

    CAS  PubMed  Google Scholar 

  • Haywood AM. Transmissible spongiform encephalopathies. N Engl J Med, 1997;337: 1821–1828

    CAS  PubMed  Google Scholar 

  • Hill AF, Zeidler M, Ironside J, Collinge J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet, 1997;349:99–100

    CAS  PubMed  Google Scholar 

  • Hitroshi S, Nagura H, Yamanouchi H, Kitamoto T. Double mutations at codon 180 and codon 232 of the PRNP gene in an apparently sporadic case of Creutzfeldt-Jakob disease. J Neurol Sci, 1993; 120: 208–211

    Google Scholar 

  • Hsich G, Kenney K. Gibbs CJ, Lee KH, Harrington MG. The 14-3-3 protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med, 1996;335:923–930

    Google Scholar 

  • Jakob A. Üher eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertem anatomischen Befunde (spastische Pseudosclerose-encephalomyelopathie mit disseminierten Degenerationsherde). Dtsch Z Nervenheilkd, 1921; 70: 132–146

    Google Scholar 

  • Johnson RT, Gibbs CJ. Creutzfeldt-Jakob disease and related spongiform encephalopathies. N Engl J Med, 1998; 339:1994–2004

    CAS  PubMed  Google Scholar 

  • Klatzo I, Gajdusek DC, Zigas V. Pathology of kuru. Lab Invest, 1959; 8: 799–847

    CAS  PubMed  Google Scholar 

  • Na DL, Suh CK, Choi SH, Moon HS, Seo DW, Kim SE, Na DG, Adair JC. Diffusion weighted magnetic resonance imaging in probable Creutzfeldt-Jakob disease: a clinical-anatomical correlation. Arch Neurol, 1999; 56: 951–957

    CAS  PubMed  Google Scholar 

  • Nitrini R, Rosenberg S, Passos-Buena MR, Teixeira da Silva LS, Inghetti P, Papadopoulos M, Carrilho PM, Caramelli P, Albrecht S, Zatz M, LeBlanc A. Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol, 1997; 42: 138–146

    CAS  PubMed  Google Scholar 

  • Priester JA de, Jansen GH, De Kruijk JR, Wilmink JT. New MRI findings in Creutzfeldt-Jakob disease: high signal in the globus pallidus on T1-weighted images. Neuroradiology, 1999;41:265–268

    PubMed  Google Scholar 

  • Prusiner SB, Scott M. Genetics of prions. Annu Rev Genet, 1997; 31: 139–175

    CAS  PubMed  Google Scholar 

  • Prusiner SB. Prion diseases and the BSE crisis. Science, 1997;278:245–251

    CAS  PubMed  Google Scholar 

  • Reder AT, Mednick AS, Brown, et al. Clinical and genetic studies of fatal familial insomnia. Neurology, 1995; 45:1968–1075

    Google Scholar 

  • Sauman I, Schulz-Schaeffer WJ, Wohrle JC, Soumer A, Kretschmar MA, Hennerici M. Clinical range and MRI in Creutzfeldt-Jakob disease with heterozygosity at codon 129 and prion protein type 2. J Neurol Neurosurg Psychiatry, 1999; 67: 678–681

    Google Scholar 

  • Urbach H. Creutzfeld-Jakob disease: analysis of the MR signal. Neuroreport 2000; 11: 5–6

    Google Scholar 

  • Urbach H, Klisch J, Woilf HK, Brechtelsbauer D, Gass S, Solymosi C. MRI in sporadic Creutzfeldt-Jakob disease: correlation with clinical and neuropathological; data. Neuroradiology, 1998; 40: 65–70

    CAS  PubMed  Google Scholar 

  • Vrancken AF, Frijns CJM, Ramos LM. FLAIR MRI in sporadic Creutzfeldt-Jakob disease. Neurology, 2000; 55: 147–148

    CAS  PubMed  Google Scholar 

  • Wells GAH, Wilesmith JW. The neuropathology and epidemiology of bovine spongiform encephalopathy. Brain Pathol, 1995; 5: 91–103

    CAS  PubMed  Google Scholar 

  • Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeirok K, Alperovitch A, Poser S, Pocchiarti M, Hofman A, Smith PG. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet, 1996; 347: 921–925

    CAS  PubMed  Google Scholar 

  • Yoon SS, Chan S, Lee K, Goodman RR. MRI of Creutzfeldt-Jakob disease: asymmetric high signal intensity in the basal ganglia. Neurology, 1995; 45: 1932–1933

    CAS  PubMed  Google Scholar 

  • Zeidler M, Stewart GE, Barraclough CR, Bateman DE, Bates D, Birn DJ, Colchester AC, Durward W, Fletcher NA, Hawkins SA, Mackenzie JM, Will RG. New variant Creutzfeldt-Jakob disease: neurological features and diagnostic tests. Lancet, 1997; 350: 903–907

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valk, J., Barkhof, F., Scheltens, P. (2002). Neurodegenerative Disorders. In: Magnetic Resonance in Dementia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56269-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56269-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62597-8

  • Online ISBN: 978-3-642-56269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics