Skip to main content

Physiological Relevance of Scaling of Heart Phenomena

  • Chapter

Abstract

Most methods used to analyze experimental data are based on the assumption that the data is from a Gaussian distribution and uncorrected. We describe methods to analyze data from scaling phenomena that do not have a Gaussian distribution [8.1–8.3] or involve long-range correlations [8.4–8.6]. We then show how those scaling methods have proved useful in characterizing the heart rate data from people who are healthy, from people who have a specific sleep disorder, and from people who have irregular heart rhythms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.S. Liebovitch, Fractals and Chaos Simplified for the Life Sciences (Oxford University Press, New York, 1998).

    MATH  Google Scholar 

  2. L.S. Liebovitch and D. Scheurle, Complexity 5, 34 (2000).

    Article  MathSciNet  Google Scholar 

  3. L.S. Liebovitch, A.T. Todorov, M.A. Wood, and K.A. Ellenbogen, in Handbook of Research Design in Mathematics and Science Education, edited by A.E. Kelly and R.A. Lesh, (Lawrence Erlbaum, Mahwah, 1999).

    Google Scholar 

  4. S. Havlin, R.B. Selinger, M. Schwartz, H.E. Stanley, and A. Bunde, Phys. Rev. Lett. 61, 1438 (1998).

    Article  ADS  Google Scholar 

  5. S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, and H.E. Stanley, in Fractals and Science, edited by A. Bunde and S. Havlin (Springer, Berlin, 1994).

    Google Scholar 

  6. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.-H. Peter, and K. Voigt, Phys. Rev. Lett. 85, 3736 (2000).

    Article  ADS  Google Scholar 

  7. L.S. Liebovitch, A.T. Todorov, M. Zochowski, M. Scheurle, L. Colgin, M.A. Wood, K.A. Ellenbogen, J.M. Herre, and R.C. Bernstein, Phys. Rev. E 59, 3312 (1999).

    Article  ADS  Google Scholar 

  8. H.E. Hurst, R.P. Black, and Y.M. Simaika, Long-term storage. An Experimental Study (Constable, London, 1965).

    Google Scholar 

  9. J. Feder, Fractals (Plenum, New York, 1988).

    MATH  Google Scholar 

  10. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger, Phys. Rev. E 49, 1685 (1994).

    Article  ADS  Google Scholar 

  11. C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger, Chaos 5, 82 (1995).

    Article  ADS  Google Scholar 

  12. s.v. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K. Peng, M. Simons, and H.E. Stanley, Phys. Rev. E 51, 5084 (1995).

    Article  ADS  Google Scholar 

  13. M.S. Taqqu, V. Teverovsky, and W. Willinger, Fractals 3, 785 (1995).

    Article  MATH  Google Scholar 

  14. F. Lombardi, A. MaUiani, M. Pagani, and S. Cerutti, Cardiovasc. Res. 32, 208 (1996).

    Article  Google Scholar 

  15. R.L. Verrier, J.E. MuUer, and J.A. Hobson, Cardiovasc. Res. 31, 181 (1996).

    Google Scholar 

  16. American Academy of Sleep Medicine Task Force, Sleep 22, 667 (1999).

    Google Scholar 

  17. A. Rechtschaffen and A. Kales, A Manual of Standardized Terminology, Techniques, andScoring System for Sleep Stages of Human Subjects, (BIS/BRI, University of California, Los Angeles, 1968).

    Google Scholar 

  18. R.P. Vertes and K. Eastman, Behavior. Brain Sci. 23, 867 (2000).

    Article  Google Scholar 

  19. T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, New Engl. J. Med. 328, 1230 (1993).

    Article  Google Scholar 

  20. V.K. Somers, M.E. Dyken, M.P. Clary, and F.M. Abboud, J. Clin. Invest. 96, 1897 (1995).

    Article  Google Scholar 

  21. C. Guilleminault, S.J. Connolly, R. Winkle, K. Melvin, and A. Tilkian, Lancet I, 126 (1984).

    Article  Google Scholar 

  22. T. Penzel, G. Amend, K. Meinzer, J.H. Peter, and P. von Wiehert, Sleep 13, 175 (1990).

    Google Scholar 

  23. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Barger, and R.J. Cohen, Science 213, 220 (1981),

    Article  ADS  Google Scholar 

  24. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation 93, 1043 (1996).

    Article  Google Scholar 

  25. M.H. Bonnet and D.L. Arand, Electroenceph. Clinical Neurophysiol. 102, 390 (1997).

    Article  Google Scholar 

  26. T. Penzel, J.H. Peter, and P. von Wiehert, in Colloque INSERM, edited by C. Gaultier, P. Escourrou, and L. Curzi-Dascalova (John Libbey Eurotext, London, 1991), p. 79.

    Google Scholar 

  27. T. Penzel, A. Bunde, J. Heitmann, J.W. Kantelhardt, J.H. Peter, and K. Voigt, IEEE Comp. Cardiol. 26, 249 (1999).

    Google Scholar 

  28. C.-K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).

    Article  ADS  Google Scholar 

  29. S. Thurner, M.C. Feurstein, and M.C. Teich, Phys. Rev. Lett. 80, 1544 (1998).

    Article  ADS  Google Scholar 

  30. L.A. Amaral, A.L. Goldberger, P.Ch. Ivanov, and H.E. Stanley, Phys. Rev. Lett. 81, 2388 (1998).

    Article  ADS  Google Scholar 

  31. C.-K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger, Physica A 249, 491 (1998).

    Article  Google Scholar 

  32. P.C. Ivanov, M.C. Rosenblum, L.A.N. Amaral, Z. Struzik, S. Havlin, A.L. Goldberger, and H.E. Stanley, Nature 399, 461 (1999).

    Article  ADS  Google Scholar 

  33. P.C. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stanley, and A.L. Goldberger, Europhys. Lett. 48, 594 (1999).

    Article  ADS  Google Scholar 

  34. A. Goldberger, C.-K. Peng, J. Hausdorff, J. Mietus, S. Havlin, and H.E. Stanley, in Fractal Geometry in Biological Systems, edited by P.M. Iannaccone and M. Khokha (CRC, Boca Raton, 1995).

    Google Scholar 

  35. K.M. Stein, L.A. Karagounis, J.L. Anderson, P. Kligfield, and B.B. Lerman, Circulation 91, 722 (1995).

    Article  Google Scholar 

  36. S.C. Credner, T. Klingenheben, O. Mauss, C. Sticherling, and S.H. Hohnloser, J. Am. Coll. Cardiol. 32, 1909 (1998).

    Article  Google Scholar 

  37. M.A. Wood, K.A. Ellenbogen, and L.S. Liebovitch, J. Am. Coll. Cardiol. 34, 950 (1999).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liebovitch, L.S., Penzel, T., Kantelhardt, J.W. (2002). Physiological Relevance of Scaling of Heart Phenomena. In: The Science of Disasters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56257-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56257-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62531-2

  • Online ISBN: 978-3-642-56257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics