Skip to main content

Entropy, Complexity, Predictability, and Data Analysis of Time Series and Letter Sequences

  • Chapter
The Science of Disasters

Abstract

The structure of time series and letter sequences is investigated using the concepts of entropy and complexity. First, conditional entropy and mutual information are introduced and several generalizations are discussed. Further, several measures of complexity are introduced and discussed. The capability of these concepts to describe the structure of time series and letter sequences generated by nonlinear maps, data series from meteorology, astrophysics, cardiology, cognitive psychology, and finance is investigated. The relation between the complexity and the predictability of information strings is discussed. The relation between local order and the predictability of time series is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Atmanspacher, J. Kurths, H. Scheingraber, R. Wackerbauer, and A. Witt, Open Syst. Info. Dyn. 1, 269 (1992).

    Article  MATH  Google Scholar 

  2. H. Atmanspacher, C. Rath, and G. Wiedemann, Physica A 234, 819 (1997).

    Article  ADS  Google Scholar 

  3. R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  4. C.H. Bennett, in Complexity, Entropy and the Physics of Information, edited by W.H. Zurek (Addison-Wesley, Reading, 1990).

    Google Scholar 

  5. A. Berman et al., Proc. Natl. Acad. Sci. USA 91, 4044 (1994).

    Article  ADS  Google Scholar 

  6. E. Kölker and E.N. Trifonov, Proc. Natl. Acad. Sci. USA 92, 557 (1995).

    Article  ADS  Google Scholar 

  7. G.J. Chaitin, J. ACM 13, 547 (1996).

    Article  MathSciNet  Google Scholar 

  8. J.P. Crutchfield and K. Young, Phys. Rev. Lett. 63, 105 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. J.P. Crutchfield and D.P. Feldman, Phys. Rev. E 55, R1239 (1997).

    Article  ADS  Google Scholar 

  10. S. Lloyd and H. Pagels, Ann. Phys. 188, 186 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Dolan, A. Witt, M.L. Spano, A. Neiman, and F. Moss, Phys. Rev. E 59, 5235 (1999).

    Article  ADS  Google Scholar 

  12. W. Ebeling, A. Neiman, and T. Pöschel, in Coherent Approach to Fluctuations (Proc. Hayashibara Forum 1995) (World Scientific, Singapore, 1995).

    Google Scholar 

  13. W. Ebeling and G. Nicolis, Europhys. Lett. 14, 191 (1991).

    Article  ADS  Google Scholar 

  14. W. Ebeling and G. Nicolis, Chaos, Solitons Fractals 2, 635 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. W. Ebeling, M.A. Jimenez-Montano, and T. Pohl, in Festschrift devoted to Jagat N. Kapur, edited by Karmeshu (New Delhi, 1999).

    Google Scholar 

  16. W. Ebeling and C. Frömmel, Biosystems 46, 47 (1998).

    Article  Google Scholar 

  17. W. Ebeling and T. Pöschel, Europhys. Lett. 26, 241 (1994).

    Article  ADS  Google Scholar 

  18. W. Ebeling, T. Pöschel, and K.F. Albrecht, Int. J. Bifurcat. Chaos 5, 51 (1995).

    Article  MATH  Google Scholar 

  19. W. Ebeling, J. Freund, and K. Rateitschak, J. Bifurcat. Chaos 6, 611 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Ebeling, J. Freund, and F. Schweitzer, Entropie, Struktur, Komplexität (Teubner, Leipzig, 1998).

    Book  Google Scholar 

  21. W. Ebeling, in Nonlinear Dynamics, Chaotic, and Complex Systems, edited by E. Infeld, R. Zelazny, and A. Galkowski (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  22. W. Ebeling, Physica D 109, 42 (1997).

    Article  ADS  MATH  Google Scholar 

  23. W. Ebeling and M.A. Jimenez-Montano, Math. Biosci. 52, 53 (1980).

    Article  MATH  Google Scholar 

  24. W. Ebeling and K. Rateitschak, Discrete Dyn. Nat. Soc. 2, 187 (1998).

    Article  MATH  Google Scholar 

  25. R. Engbert, C. Scheffczyk, R.T. Krampe, M. Rosenblum, J. Kurths, and R. Khegl, Phys. Rev. E 56, 5823 (1997).

    Article  ADS  Google Scholar 

  26. D.P. Feldman and J.P. Crutchfield, Phys. Lett. A 238, 244 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. L. Gatlin, Information Theory and the Living System (Columbia University Press, New York, 1972).

    Google Scholar 

  28. W. Gowin, P.I. Saparin, J. Kurths, and D. Felsenberg, Radiology 205, 428 (1997).

    Google Scholar 

  29. W. Gowin, P.I. Saparin J. Kurths, and D. Felsenberg, Technol. Health Care 6, 373 (1998).

    Google Scholar 

  30. P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986); Physica A A 140, 319 (1986).

    Google Scholar 

  31. A. Hempelmann and J. Kurths, Astron. Astrophys. 232, 356 (1990).

    ADS  Google Scholar 

  32. H. Herzel, A.C. Schmitt, and W. Ebeling, Phys. Rev. E 50, 5061 (1994).

    Article  ADS  Google Scholar 

  33. H. Herzel, W. Ebeling, and A. Schmitt, Chaos, Sohtons Fractals 4, 97 (1994).

    Article  ADS  MATH  Google Scholar 

  34. H. Herzel, W. Ebeling, A.O. Schmitt, and M.A. Jimenez-Montano, in From Simplicity to Complexity in Chemistry, edited by A. Müller et al. (Vieweg, Braunschweig, 1996).

    Google Scholar 

  35. H. Herzel, W. Ebeling, and I. Grosse, Proc. Conf. Bioinf. (GBF Monogr. 18, Braunschweig 1995).

    Google Scholar 

  36. H. Herzel and I. Grosse, Physica A 216, 518 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Herzel and I. Grosse, Phys. Rev. E 55, 1 (1997).

    Article  Google Scholar 

  38. W. Hilberg, Frequenz 44, 243 (1990).

    Article  Google Scholar 

  39. M.A. Jimenez Montano, Bull. Math. Biol. 46, 641 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Li and K. Kaneko, Europhys. Lett. 17, 655 (1992).

    Article  ADS  Google Scholar 

  41. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  42. F. Kaspar and H.G. Schuster, Phys. Rev. A 36, 842 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  43. Yu.L. Klimontovich, Turbulent Motion and the Structure of Chaos (Kluwer, Dordrecht, 1991).

    Book  MATH  Google Scholar 

  44. A.N. Kolmogorov, Dokl. Akad. Nauk USSR 124, 754 (1959).

    MathSciNet  MATH  Google Scholar 

  45. A.N. Kolmogorov, Probl. Inf. Theory 1, 3 (1965).

    MathSciNet  MATH  Google Scholar 

  46. J. Kurths and U. Schwarz, Space Sci. Rev. 68, 171 (1994).

    Article  ADS  Google Scholar 

  47. J. Kurths, A. Voß, P. Saparin, A. Witt, H.J. Kleiner, and N. Wessel, Chaos 5, 88 (1995).

    Article  ADS  Google Scholar 

  48. R. Krampe, R. Kliegl, and U. Mayr, The Fast and the Slow of Bimanual Movement Timing, Res. Rep. (Max-Planck-Institute for Human Development, Berlin, Germany, 1993).

    Google Scholar 

  49. P.T. Landsberg, Phys. Lett. A 102, 107 (1984).

    Article  MathSciNet  Google Scholar 

  50. P.T. Landsberg, in On Self- Organization, edited by R.K. Misra, D. Maas, and E. Zwierlein (Springer, Berlin, 1994).

    Google Scholar 

  51. A. Lempel and J. Ziv, IEEE Trans. Inf. Theory IT-22, 75 (1976).

    Article  MathSciNet  Google Scholar 

  52. L. Levitin and Z. Reingold, Chaos, Solitons Fractals 4, 709 (1994).

    Article  ADS  MATH  Google Scholar 

  53. K. Lindgren and M. Nordahl, Complex Syst. 2, 409 (1988).

    MathSciNet  MATH  Google Scholar 

  54. R. Lopez-Ruiz, H.L. Mancini, and X. Calbet, Phys. Lett. A 209, 321 (1995).

    Article  ADS  Google Scholar 

  55. D.W. McShea, Biol. Physiol. 6, 303 (1991).

    Google Scholar 

  56. L. Molgedey, Int. J. Theo. App. Finance 3, 417 (2000).

    Article  Google Scholar 

  57. L. Molgedey and W. Ebeling, Eur. Phys. J. B 15, 733 (2000).

    Article  ADS  Google Scholar 

  58. A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996).

    Article  ADS  Google Scholar 

  59. C. Nicolis, W. Ebeling, and C. Baraldi, Tellus 49A, 10 (1997).

    Google Scholar 

  60. X. Pel and F. Moss, Nature 379, 618 (1996).

    Article  ADS  Google Scholar 

  61. C.K. Peng et al., Phys. Rev. E 49, 1685 (1994).

    Article  ADS  Google Scholar 

  62. S.M. Pincus, Proc. Natl. Acad. Sci. USA 88, 2297 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. B. Pompe, J. Stat. Phys. 73, 587 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. P. Saparin, A. Witt, J. Kurths, and V. Anishenko, Chaos, Solitons Fractals 4, 1907 (1994).

    Article  ADS  MATH  Google Scholar 

  65. P.I. Saparin, W. Gowin, J. Kurths, and D. Felsenberg, Phys. Rev. E 58, 6449 (1998).

    Article  ADS  Google Scholar 

  66. A.O. Schmitt, H. Herzel, and W. Ebeling, Europhys. Lett. 23, 303 (1993).

    Article  ADS  Google Scholar 

  67. A.O. Schmitt, W. Ebeling, and H. Herzel, Biosystems 37, 199 (1996).

    Article  Google Scholar 

  68. C. Schittenkopf and G. Deco, Physica D 94, 57 (1996).

    Article  MATH  Google Scholar 

  69. H.G. Schuster, Deterministic Chaos: An Introduction (VCH, Weinheim, 1988).

    Google Scholar 

  70. U. Schwarz, J. Kurths, A. Witt, and A.O. Benz, Astron. Astrophys. 277, 215 (1993).

    ADS  Google Scholar 

  71. C. Shannon, Bell Systems Tech. 30, 50 (1951).

    MATH  Google Scholar 

  72. J.S. Shiner, in Self-Organization of Complex Structures: From Individual to Collective Dynamics, edited by F. Schweitzer (Gordon and Breach, London, 1996).

    Google Scholar 

  73. J.S. Shiner, M. Davison, and P.T. Landsberg, Phys. Rev. E 59, 1459 (1999).

    Article  ADS  Google Scholar 

  74. P.T. Landsberg and J.S. Shiner, Phys. Lett. A 245, 228 (1998).

    Article  ADS  Google Scholar 

  75. Ya. B. Sinai, Dokl. Akad. Nauk USSR 124, 768 (1959); 125, 1200 (1959).

    MathSciNet  MATH  Google Scholar 

  76. L.B. Smith and E. Thelen (eds.), A Dynamic Systems Approach to the Development of Cognition and Action (MIT, Cambridge, MA, 1994).

    Google Scholar 

  77. H.E. Stanley et al., Physica A 205, 214 (1994).

    Article  ADS  Google Scholar 

  78. G.E. Stelmach and J. Requin (eds.). Tutorials in Motor Behavior II (North Holland, Amsterdam, 1992).

    Google Scholar 

  79. E.N. Trifonov and V. Brendel, Gnomic — A Dictionary of Genetic Codes (VCH, Weinheim, 1987).

    Google Scholar 

  80. A. Voss, K. Hnatkova, N. Wessel, J. Kurths, A. Sander, A. Schirdewan, A.J. Camm, and M. Malik, Pace 21, 186 (1998).

    Article  Google Scholar 

  81. H. Voss and J. Kurths, Phys. Rev. E 58, 1155 (1998).

    Article  ADS  Google Scholar 

  82. R.F. Voss, Phys. Rev. Lett. 68, 3805 (1992).

    Article  ADS  Google Scholar 

  83. R.F. Voss, Fractals 2, 1 (1994).

    Article  Google Scholar 

  84. R. Wackerbauer, A. Witt, H. Atmanspacher, J. Kurths, and H. Scheingraber, Chaos, Solitons Fractals 4, 133 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. P.C. Werner, F.-W. Gerstengarbe, and W. Ebeling, Theor. Appl. Climatol. 62, 125 (1999).

    Article  ADS  Google Scholar 

  86. A. Witt, J. Kurths, F. Krause, and K. Fischer, Geophys. Astrophys. Fluid Dyn. 77, 79 (1994).

    Article  ADS  Google Scholar 

  87. A. Witt, A. Neiman, and J. Kurths, Phys. Rev. E 55, 5050 (1997).

    Article  ADS  Google Scholar 

  88. A.M. Yaglom and I.M. Yaglom, Probability and Information (Kluwer, Dordrecht, 1983).

    MATH  Google Scholar 

  89. H.P. Yockey, Information Theory and Molecular Biology (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  90. M. Zaks, A. Pikovsky, and J. Kurths, Physica D 117, 77 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebeling, W., Molgedey, L., Kurths, J., Schwarz, U. (2002). Entropy, Complexity, Predictability, and Data Analysis of Time Series and Letter Sequences. In: The Science of Disasters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56257-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56257-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62531-2

  • Online ISBN: 978-3-642-56257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics