Skip to main content

Interactive Knot Theory with KnotPlot

  • Conference paper
Multimedia Tools for Communicating Mathematics

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We describe the computer program KnotPlot, a topological drawing tool for knots and links. Novel aspects of KnotPlot include interactive construction and manipulation of a large variety of knots and their embeddings into three-space, automated and semi-automated knot relaxation and simplification algorithms, and techniques for calculating and converting among a number of mathematical representations for knots in addition to direct visualization of the embeddings. Some applications of the system to knot theoretical problems are discussed, including the determination of the stick number of a knot and simplification of complex hyperbolic knots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colin C. Adams, Bevin M. Brennan, Deborah L. Greilsheimer, and Alexander K. Woo. Stick numbers and composition of knots and links. Journal of Knot Theory and Its Ramifications, 6(2):149–161, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. Clifford W. Ashley. The Ashley Book of Knots. Doubleday, New York,Corrected edition, 1944.

    Google Scholar 

  3. George Bain. Celtic Art — The Methods of Construction. Dover, NewYork, 1973. Unabridged republication of the work originally published by William MacLellan & Co., Ltd., Glascow, in 1951.

    Google Scholar 

  4. G. Buck and J. Orloff. Computing canonical conformations for knots. Topology and its Applications, 51:247–253, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. Patrick J. Callahan, John C. Dean, and Jeffrey R. Weeks. The simplest hyperbolic knots. Journal of Knot Theory and Its Ramifications, 8(3):279–297, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  6. Annalisa Calini and Thomas Ivey. Bäcklund transformations and knotsof constant torsion. Journal of Knot Theory and Its Ramifications, 7(6):719–746, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Conway. An enumeration of knots and links, and some of theiralgebraic properties. In John Leech, editor,Computational Problems in Abstract Algebra, pages 329–358, 1970.

    Google Scholar 

  8. C. H. Dowker and Morwen B. Thistlethwaite. Classification of knotprojections. Topology and its Applications, 16:19–31, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  9. Robert P. Grzeszczuk, Milana Huang, and Louis H. Kauffman. Physically-based stochastic simplification of mathematical knots. IEEE Transactions on Visualization and Computer Graphics, 3(3):262–272, July/September 1997.X

    Article  Google Scholar 

  10. Louis H. Kauffman. Knots and Physics, volume 1 of Series on Knots and Everything. World Scientific, Singapore, 1991.

    Google Scholar 

  11. Vsevolod Katritch, Jan Bednar, Didier Michoud, Robert G. Scharein, Jacques Dubochet, and Andrzej Stasiak. Geometry and physics of knots. Nature, 384(6605): 142–145, 14 November 1996.

    Article  MathSciNet  Google Scholar 

  12. Robert B. Kusner and John M. Sullivan. Möbius energies for knots and links, surfaces and submanifolds. Technical Report GCG64, Geometry Center, University of Minnesota, January 1994.

    Google Scholar 

  13. Monica Meissen. Edge numbers of knots, 1996. World Wide Web sitehttp://www.math.uiowa.edu/~meissen/

  14. Richard Randell. An elementary invariant of knots. Journal of Knot Theory and Its Ramifications, 3(3):279–286, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dale Rolfsen. Knots and Links. Publish or Perish, Inc.,1976.

    Google Scholar 

  16. Dennis Roseman. Design of a mathematicians’ drawing program. In Steve Cunningham, Nancy Knolle Craighill, Martin W. Fong, and Ju-dith R. Brown, editors, Computer Graphics Using Object-Oriented Programming, chapter 11, pages 279–295. John Wiley & Sons, New York, 1992.

    Google Scholar 

  17. Uri Shani and Dana H. Ballard. Splines as embeddings for generalized cylinders. Computer Vision, Graphics, and Image Processing, 27(2): 129–156, August 1984.

    Article  Google Scholar 

  18. Robert G. Scharein. Interactive Topological Drawing. PhD thesis, Department of Computer Science, The University of British Columbia, 1998.

    Google Scholar 

  19. Robert G. Scharein. The KnotPlot Site, 2000. World Wide Web sitehttp://www.pims.math.ca/knotplot/

  20. Eric Sedgwick, pretzel. Video tape illustration of the proof of a theorem An infinite collection of Heegaard splittings that are equivalent after one stabilization, Mathematische Annalen, 308(1):65–72 September 1996. Information available at the World Wide Web sitehttp://www.ma.utexas.edu/users/sedgwick/pretzel/pretzel.html

    MathSciNet  Google Scholar 

  21. Eric Sedgwick. An infinite collection of Heegaard splittings that are equivalent after one stabilization. Mathematische Annalen, 308(1):65–72, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeff Weeks. Experimental Mathematics, 1990.

    Google Scholar 

  23. Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide. Addison-Wesley, Reading, Massachusetts, third edition, 1999.

    Google Scholar 

  24. Ying-Qing Wu. MING - an MD knot energy minimizing program. In Topology and Geometry in Polymer Science, University of Minnesota, Minneapolis, June 1996. Institute for Mathematics and its Applications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scharein, R.G., Booth, K.S. (2002). Interactive Knot Theory with KnotPlot. In: Borwein, J., Morales, M.H., Rodrigues, J.F., Polthier, K. (eds) Multimedia Tools for Communicating Mathematics. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56240-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56240-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62701-9

  • Online ISBN: 978-3-642-56240-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics