Skip to main content

Solution Structure in Supercritical Fluids

  • Chapter
Supercritical Fluids

Part of the book series: Springer Series in Materials Processing ((SSMATERIALSPROC))

Abstract

The position of the supercritical fluid (SCF) region can be shown on the conventional PVT phase diagram. If the projection onto the P-T plane and that onto the P-V plane are made, we obtain two diagrams as in Fig. 1.1.1 (a) and (b) with the critical point (C.P.) at each center. The SCF is in the region above C.P. on the P-T and P-V diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

1.2 Solvation Structure from Spectroscopy

  1. O. Kajimoto, Chem. Rev., 99, 355 (1999).

    Google Scholar 

  2. P. Villard, Comptes Rendus, 120, 182 (1895).

    Google Scholar 

  3. J. A. Hyatt, J. Org. Chem., 49, 5097 (1984).

    Google Scholar 

  4. S. Akimoto and O. Kajimoto, Chem. Phys. Lett., 209, 263 (1993).

    ADS  Google Scholar 

  5. L. Onsager, J. Am. Chem. Soc. 1936, 58, 1486.

    Google Scholar 

  6. A. D. Buckingham, Proc. Roy. Soc., A248, 169 (1958).

    ADS  Google Scholar 

  7. E. G. McRae, J. Phys. Chem., 61, 562 (1957).

    Google Scholar 

  8. Supercritical Fluid Science and Technology”, ed. K. P. Johnston and J. M. L. Penninger, American Chemical Society monograph 406, Washington, DC (1989).

    Google Scholar 

  9. R. Noyori, ed., Chem. Rev., 99, 2 (1999).

    Google Scholar 

  10. M. E. Sigman, S. M. Lindley and J. E. Leffler, J. Am. Chem. Soc, 107, 1471 (1985).

    Google Scholar 

  11. C. R. Yonker, S. L. Frye, D. R. Kalkwarf and R. D. Smith, J. Phys. Chem., 90, 3022 (1986).

    Google Scholar 

  12. C. R. Yonker and R. D. Smith, J. Phys. Chem., 92, 235 (1988).

    Google Scholar 

  13. C. R. Yonker and R. D. Smith, J. Phys. Chem., 92, 2374 (1988).

    Google Scholar 

  14. C. R. Yonker and R. D. Smith, J. Phys. Chem., 93, 1261 (1989).

    Google Scholar 

  15. S. Kim and K. P. Johnston, Ind Eng. Chem. Res., 26, 1206 (1987).

    Google Scholar 

  16. O. Kajimoto, M. Futakami, T. Kobayashi and K. Yamasaki, J. Phys. Chem., 92, 1347 (1988).

    Google Scholar 

  17. O. Kajimoto, K. Yamasaki and K. Honma, Faraday Disc. Chem. Soc., 85, 65 (1989).

    Google Scholar 

  18. Y.-P. Sun, M. A. Fox, and K. P. Johnston, J. Amer. Chem. Soc, 114, 1187 (1992).

    Google Scholar 

  19. J. N. Wilson, Chem. Rev., 25, 377 (1939).

    Google Scholar 

  20. Y. Ooshika, J. Phys. Soc. Japan, 9, 594 (1954).

    ADS  Google Scholar 

  21. N. Mataga and T. Kubota, “Molecular Interactions and Electronic Spectra”, Marcel Dekker, New York (1970).

    Google Scholar 

  22. H. Luo and S. C. Tucker, J. Phys. Chem., 100, 11165 (1996).

    Google Scholar 

  23. M. T. Klein, Y. G. Mentha and L. A. Tony, Ind. Eng. Chem. Res, 31, 182 (1992).

    Google Scholar 

  24. H. Luo, H. and S. C. Tucker, J. Phys. Chem. B 101, 1063 (1997).

    Google Scholar 

  25. L. W. Flanagin, P. B. Balbuena, K. P. Johnston and P. J. Rossky, J. Phys. Chem., 99, 5196 (1995).

    Google Scholar 

  26. P. B. Balbuena, K. P. Johnston and P. J. Rossky, J. Am. Chem. Soc, 116, 2689 (1994).

    Google Scholar 

  27. R. Ishii, S. Okazaki, I. Okada, M. Furusaka, N. Watanabe, M. Misawa and T Fukunaga, J. Chem. Phys., 105, 7011 (1996).

    ADS  Google Scholar 

  28. S. Okazaki, M. Matsumoto, I. Okada, K. Maeda, and Y. Kataoka, J. Chem. Phys., 103, 8594 (1995).

    ADS  Google Scholar 

  29. I. B. Petsche and P. G. Debenedetti, J. Chem. Phys., 91, 7075 (1989).

    ADS  Google Scholar 

  30. P. G. Debenedetti, Chem. Eng. Sci., 42, 2203 (1987).

    Google Scholar 

  31. P. G. Debenedetti, I. B. Petsche and R. S. Mohamed, Fluid Phase Equilibria, 52, 347 (1989).

    Google Scholar 

  32. C. Reichardt, “Solvents and Solvent Effects in Organic Chemistry”, VCH, New York (1990).

    Google Scholar 

  33. J. G. Kirkwood, W. West and R. T. Edwards, J. Chem. Phys., 5, 14 (1937).

    ADS  Google Scholar 

  34. H. Sato, Thesis, Kyoto University (1996).

    Google Scholar 

  35. E. U. Franck and K. Roth, Discuss. Faraday Soc., 43, 108 (1967).

    Google Scholar 

  36. A. P. Luck, Discuss. Faraday Soc., 43, 115 (1967).

    Google Scholar 

  37. T. W. Zerda, B. Wiegrand and J. Jonas, J. Chem. Eng. Data, 31, 274 (1986).

    Google Scholar 

  38. J. P. Blitz, C. R. Yonker and R. D. Smith, J. Phys. Chem., 93, 6661 (1989).

    Google Scholar 

  39. N. Wada, M. Saito, D. Kitada, R. L. Smith, Jr., H. Inomata, K. Arai and S. Saito, J. Phys. Chem. B, 101, 10918 (1997).

    Google Scholar 

1.3 Solvation Structure from Molecular Simulations

  1. C. S. Murthy, K. Singer and I. R. McDonald, Mol. Phys. 44, 135 (1981).

    ADS  Google Scholar 

  2. W. A. Steels and H. A. Posch, J. Chem. Soc. Faraday Trans., 238, 1843 (1987).

    Google Scholar 

  3. L. C. Geiger, B. M. Ladanyi and M. E. Chapin, J. Chem. Phys., 93, 4533 (1990).

    ADS  Google Scholar 

  4. D. Moeller, “Thermodynamik Fluider Mischungen, Kalorimetrie und Computersimulationen”, VDI-Verlag, Düsseldorf (1991).

    Google Scholar 

  5. D. Moeller and J. Fischer, Fluid Phase Equilibria, 100, 35 (1994).

    Google Scholar 

  6. S. Tsuzuki, T. Uchimaru, K. Tanabe, S. Kuwajima, N. Tajima and T. Hirano, J. Phys. Chem., 100, 4400 (1996).

    Google Scholar 

  7. S. Tsuzuki, T. Uchimaru, M. Mikami, K. Tanabe, T. Sako and S. Kuwajima, Chem. Phys. Lett., 255, 347 (1996).

    ADS  Google Scholar 

  8. S. Tsuzuki, T. Uchimaru, M. Mikami and K. Tanabe, J. Chem. Phys., 109, 1 (1998).

    Google Scholar 

  9. M. Welker, G. Steinebrunner, J. Solca and H. Huber, Chem. Phys., 213, 253 (1996).

    Google Scholar 

  10. G. Steinebrunner, A. J. Dyson, B. Kirchner and H. Huber, J. Chem. Phys., 109, 3153 (1998).

    ADS  Google Scholar 

  11. A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory”, Macmillan, London (1982).

    Google Scholar 

  12. A. J. Stone, “The Theory of Intermolecular Forces”, Oxford University Press, Oxford (1996).

    Google Scholar 

  13. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).

    ADS  Google Scholar 

  14. M. A. Walsh, T. H. England, T. R. Dyke and B. J. Howard, Chem. Phys. Lett., 142, 265 (1987).

    ADS  Google Scholar 

  15. K. W. Jucks, Z. S. Huang, R. E. Miller, G. T. Fraser, A. S. Pine, and W. J. Lafferty, J. Chem. Phys., 88, 2185 (1988).

    ADS  Google Scholar 

  16. B. H. Besler, K. M. Merz Jr. and P.A. Kollman, J. Comp. Chem., 11, 431 (1990).

    Google Scholar 

  17. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Clarendon Press, Oxford (1987). The programs referred to in this book are available at http://www.dl.ac.uk/CCP/CCP5/main.html.

    MATH  Google Scholar 

  18. C. G. Gray and K. E. Gubbins, “Theory of Molecular Fluids”, Clarendon Press, Oxford (1984).

    MATH  Google Scholar 

  19. J. Kolafa and I. Nezbeda, Fluid Phase Equilibria, 100, 1 (1994).

    Google Scholar 

  20. “Monte Carlo Methods in Statistical Physics”, ed. K. Binder, Springer-Verlag, Berlin (1979).

    Google Scholar 

  21. “Applications of the Monte Carlo Method in Statistical Physics”, ed. K. Binder, Springer-Verlag, Berlin (1984).

    MATH  Google Scholar 

  22. “The Monte Carlo Method in Condensed Matter Physics”, ed. K. Binder, Springer-Verlag, Berlin (1992).

    Google Scholar 

  23. J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newnan, “The Theory of Critical Phenomena”, Oxford University Press, Oxford (1992).

    MATH  Google Scholar 

  24. J. M. Yeomans, “Statistical Mechanics of Phase Transitions”, Oxford University Press, Oxford (1992).

    Google Scholar 

  25. I. B. Petsche and P. G. Debenedetti, J. Chem. Phys., 91, 7075 (1989).

    ADS  Google Scholar 

  26. P. Postorino, R. H. Tromp, M. A. Ricci, A. K. Soper and G. W. Neilson, Nature, 366, 668 (1993).

    ADS  Google Scholar 

  27. R. H. Tromp, P. Postorino, G. W. Neilson, M. A. Ricci and A. K. Soper, J. Chem. Phys., 101, 6210 (1994).

    ADS  Google Scholar 

  28. C. A. Eckert, D. H. Ziger, K. P. Johnston and S. J. Kim, J. Phys. Chem., 90, 2738 (1986).

    Google Scholar 

  29. P. T. Cummings, H. D. Cochran, J. M. Simonson, R. E. Mesmer and S. Karabomi, J. Chem. Phys., 94, 5606 (1991).

    ADS  Google Scholar 

  30. H. D. Cochran, P. T. Cummings and S. Karabomi, Fluid Phase Equilibria, 71, 1 (1992).

    Google Scholar 

  31. P. T. Cummings, A. A. Chialvo and H. D. Cochran, Chem. Eng. Sci., 49, 2735 (1994).

    Google Scholar 

  32. S. T. Cui and J. G. Harris, Chem. Eng. Sci., 49, 2749 (1994).

    Google Scholar 

  33. S. T. Cui and J. G. Harris, J. Phys. Chem., 99, 2900 (1995).

    Google Scholar 

  34. J. Gao, J. Am. Chem. Soc, 115, 6893 (1993).

    Google Scholar 

  35. S. Okazaki, M. Matsumoto, I. Okada, K. Maeda and Y. Kataoka, J. Chem. Phys., 103, 8594 (1995).

    ADS  Google Scholar 

  36. R. Ishii, S. Okazaki, I. Okada, M. Furusaka, N. Watanabe, M. Misawa and T. Fukunaga, J. Chem. Phys., 105, 7011 (1996).

    ADS  Google Scholar 

  37. L. C. Geiger, B. M. Ladanyi and M. E. Chapin, J. Chem. Phys., 93, 4533 (1990).

    ADS  Google Scholar 

  38. Y. Kataoka, J. Chem. Phys., 87, 589 (1987).

    ADS  Google Scholar 

  39. R. D. Mountain, J. Chem. Phys., 90, 1866 (1989).

    ADS  Google Scholar 

  40. A. G. Kalinichev and J. D. Bass, Chem. Phys. Lett., 231, 301 (1994).

    ADS  Google Scholar 

  41. J. J. de Pablo and J. M. Prausnitz, Fluid Phase Equilibria, 53, 177 (1989).

    Google Scholar 

  42. A. A. Chialvo and P. T. Cummings, J. Chem. Phys., 101, 4466 (1994).

    ADS  Google Scholar 

  43. Y. Guissani and B. Guillot, J. Chem. Phys., 98, 8221 (1993).

    ADS  Google Scholar 

  44. R. D. Mountain, NISTIR, 6028 (1997).

    Google Scholar 

  45. T. I. Mizan, P. E. Savage and R. M. Ziff, J. Phys. Chem., 100, 403 (1996).

    Google Scholar 

  46. C. C. Liew, H. Inomata and K. Arai, Fluid Phase Equilibria, 144, 287 (1998).

    Google Scholar 

  47. E. S. Fois, M. Sprik and M. Parrinello, Chem. Phys. Lett., 223, 411 (1994).

    ADS  Google Scholar 

  48. J. Ortega, J. P. Lewis and O. F. Sankey, J. Chem. Phys., 106, 3696 (1997).

    ADS  Google Scholar 

  49. R. D. Mountain, J. Chem. Phys., 103, 3084 (1995).

    ADS  Google Scholar 

  50. I. M. Svishchev, P. G. Kusalik, J. Wang and R. J. Boyd, J. Chem. Phys., 105, 4742 (1996).

    ADS  Google Scholar 

  51. N. Yoshii, H. Yoshie, S. Miura and S. Okazaki, J. Chem. Phys., 109, 4873 (1998).

    ADS  Google Scholar 

  52. N. Yoshii, S. Miura and S. Okazaki, Bull. Chem. Soc. Jpn., 72, 151 (1999).

    Google Scholar 

  53. K. Yamanaka, T. Yamaguchi and H. Wakita, J. Chem. Phys., 101, 9830 (1994).

    ADS  Google Scholar 

  54. N. Matubayasi, C. Wakai and M. Nakahara, Phys. Rev. Lett., 78, 2573 (1997).

    ADS  Google Scholar 

  55. N. Matubayasi, C. Wakai and M. Nakahara, J. Chem. Phys., 107, 9133 (1997).

    ADS  Google Scholar 

  56. M. M. Hoffmann and M. S. Conradi, J. Am. Chem. Soc., 119, 3811 (1997).

    Google Scholar 

  57. Y. Ikushima, K. Hatakeda, N. Saito and M. Arai, J. Chem. Phys., 108, 5855 (1998).

    ADS  Google Scholar 

  58. A. K. Soper, F. Bruni and M. A. Ricci, J. Chem. Phys., 106, 247 (1997).

    ADS  Google Scholar 

  59. P. Jedlovszky, J. P. Brodholt, F. Bruni, M. A. Ricci, A. K. Soper and R. Vallauri, J. Chem. Phys., 108, 8528 (1998).

    ADS  Google Scholar 

  60. L. X. Dang, J. Chem. Phys., 97, 2659 (1992).

    ADS  Google Scholar 

  61. Y. E. Gorbaty and Y. N. Demianets, Chem. Phys. Lett., 100, 450 (1983).

    ADS  Google Scholar 

1.4 Static Properties of Supercritical Fluids

  1. A. Kido, O. Kitao and K. Nakanishi, Chem. Phys. Lett., 199, 403 (1992).

    ADS  Google Scholar 

  2. R. Yamamoto, O. Kitao and K. Nakanishi, Mol. Simulation, 12, 383 (1994).

    Google Scholar 

  3. J. J. Nicolas, K. E. Gubbins, W. B. Street and D. J. Tildesley, Mol. Phys., 37, 1429 (1979).

    ADS  Google Scholar 

  4. J. K. Johnson, J. A. Zollweg and K. E. Gubbins, Mol. Phys., 78, 591 (1993).

    ADS  Google Scholar 

  5. J. Kolafa and I. Nezbeda, Fluid Phase Equilibria, 100, 1 (1994).

    Google Scholar 

  6. E. A. Guggenheim, “Mixtures”, Clarendon Press, Oxford (1952).

    Google Scholar 

  7. J. H. Hildebrand, J. M. Prausnitz and R. L. Scott, “Regular and Related Solutions”, Van Nostrand Reinhold, New York (1970).

    Google Scholar 

  8. C. J. Wormald and J. M. Eyears, J. Chem. Thermodynamics, 20, 323 (1988).

    Google Scholar 

  9. M. S. Gruszkiewicz and J. B. Ott, Fluid Phase Equilibria, 124, 81 (1996).

    Google Scholar 

  10. I. R. McDonald, Mol. Phys., 23, 41 (1972).

    ADS  Google Scholar 

  11. I. Fujihara and K. Nakanishi, J. Chem. Phys., 107, 3121 (1997).

    ADS  Google Scholar 

  12. B. Widom, J. Chem. Phys., 39, 2808 (1963).

    ADS  Google Scholar 

  13. J. G. Kirkwood, J. Chem. Phys., 3, 300 (1935).

    ADS  Google Scholar 

  14. K. S. Shing and S. T. Chung, J. Phys. Chem., 91, 1674 (1987).

    Google Scholar 

  15. H. Eya, Y. Iwai, T. Fukuda and Y. Arai, Fluid Phase Equilibria, 77, 39 (1992).

    Google Scholar 

  16. Yu. V. Tsekhanskaya, M. B. Iomtev and E. V. Mushkina, Russ. J. Phys. Chem., 38, 1173 (1964).

    Google Scholar 

  17. Y. Iwai, H. Uchida, Y. Koga, Y. Arai and Y. Mori, Ind. Eng. Chem. Res., 35, 3782 (1996).

    Google Scholar 

  18. Y. Iwai, H. Uchida, Y. Arai and Y. Mori, Fluid Phase Equilibria, 144, 233 (1998).

    Google Scholar 

  19. R. A. Van Leer and M. E. Paulaitis, J. Chem. Eng. Data, 25, 257 (1980).

    Google Scholar 

  20. Y. Iwai, H. Yamamoto, Y. Tanaka and Y. Arai, J. Chem. Eng. Data, 35, 174 (1990).

    Google Scholar 

  21. Y. Mori, T. Shimizu, Y. Iwai and Y. Arai, J. Chem. Eng. Data, 37, 317 (1992).

    Google Scholar 

  22. Y. Koga, Y. Iwai and Y. Arai, J. Chem. Phys., 101, 2283 (1994).

    ADS  Google Scholar 

  23. Y. Iwai, Y. Koga and Y. Arai, Fluid Phase Equilibria, 116, 267 (1996).

    Google Scholar 

  24. Y. Koga, Y. Iwai, M. Yamamoto and Y. Arai, Fluid Phase Equilibria, 131, 83 (1997).

    Google Scholar 

  25. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Clarendon Press, Oxford (1987).

    MATH  Google Scholar 

  26. D. Frenkel and B. Smit, “Understanding Molecular Simulation, From Algorithm to Applications”, Academic Press, Sandiego (1996).

    Google Scholar 

  27. T. Nitta, and J. Yoneya, J. Chem. Eng. Jpn, 28, 31 (1995).

    Google Scholar 

  28. W. A. Steele, “The Interaction of Gases with Solid Surfaces”, Pergamon Press, Oxford (1974).

    Google Scholar 

  29. H. Shojibara, Y. Sato, S. Takishima and H. Masuoka, Chem. Eng. Jpn, 28, 245 (1995).

    Google Scholar 

  30. T. Shigeta, J. Yoneya and T. Nitta, Mol. Sim., 16, 291 (1996).

    Google Scholar 

  31. T. Nitta and T. Shigeta, Fluid Phase Equilibria, 144, 245 (1998).

    Google Scholar 

  32. T. Shigeta and T. Nitta, J Chem. Eng. Jpn, 29, 516 (1996).

    Google Scholar 

  33. T. Shigeta and T. Nitta, J Chem. Eng. Jpn, 32, 150 (1999).

    Google Scholar 

1.5 Dynamic Properties of Supercritical Fluids

  1. S. Saito, J. Supercrit. Fluids, 8, 177 (1995).

    Google Scholar 

  2. F. V. Bright and M. E. McNally, “Supercritical Fluid Technology — Theoretical and Applied Approaches to Analytical Chemistry”, ACS Symposium Series, 488 (1992).

    Google Scholar 

  3. T. J. Bruno and J. F. Ely, “SCF Technology-Review in Modern Theory and Application”, CRC Press, Boca Raton (1991).

    Google Scholar 

  4. C. A. Eckert, D. H. Ziger, K. P. Johnston and T. K. Ellison, Fluid Phase Equilibria, 14, 167 (1983).

    Google Scholar 

  5. S. Kim and K. P. Johnston, AIChE J., 33, 1603 (1987).

    Google Scholar 

  6. I. B. Petsche and P. G. Debenedetti, J. Chem. Phys., 91, 7075 (1989).

    ADS  Google Scholar 

  7. H. D. Cochran and L. L. Lee, ACS Symposium Series, 406, 27 (1989).

    Google Scholar 

  8. P. T. Cummings, A. A. Chialvo, H. D. Cochran, Chem. Eng. Sci., 49, 2735 (1994).

    Google Scholar 

  9. T. L. Hill, J. Chem. Phys., 23, 617 (1955); “Statistical Mechanics — Principle and Selected Applications”, McGraw-Hill, New York (1956).

    Google Scholar 

  10. E. M. Sevick, A. Monson and J. M. Ottino, J. Chem. Phys., 88, 1198 (1988).

    ADS  Google Scholar 

  11. I. B. Petsche and P. G. Debenedetti, J. Chem. Phys., 95, 386 (1991).

    Google Scholar 

  12. C. C. Liew, H. Inomata and S. Saito, Fluid Phase Equilibria, 104, 317 (1995).

    Google Scholar 

  13. H. Inomata, S. Saito and P. G. Debenedetti, Fluid Phase Equilibria, 116, 282 (1996).

    Google Scholar 

  14. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Clarendon Press, Oxford (1987).

    MATH  Google Scholar 

  15. Y. Kataoka and M. Fujita, Bull. Chem. Soc. Jpn., 68, 152 (1995).

    Google Scholar 

  16. R. L. Rowley and M. M. Painter, Int. J. Thermophysics, 18, 1109 (1997). According to the author, constant b3,2 for viscosity in Table V should be read as 1067.97. Constant ω2 for viscosity in Table V should be read as −2.0265.

    ADS  Google Scholar 

  17. J. Kolafa and I. Nezbeda, Fluid Phase Equilibria, 100, 1 (1994).

    Google Scholar 

  18. O. Kitao, K. Tanabe, S. Ono, S. Kumakura and K. Nakanishi, Fluid Phase Equilibria, 144, 279 (1998).

    Google Scholar 

  19. H. Iwasaki and M. Takahashi, J. Chem. Phys., 74, 1930 (1981).

    ADS  Google Scholar 

  20. D. K. Dysthe and B. Hafskjold, Int. J. Thermophysics, 16, 1213 (1995).

    ADS  Google Scholar 

  21. H. Nishiumi, M. Fujita and K. Ago, Fluid Phase Equilibria, 117, 356 (1996).

    Google Scholar 

  22. D. L. Jolly and R. J. Bearman, Mol. Phys., 41, 137 (1980).

    ADS  Google Scholar 

  23. A. Ben-Naim, “Water and Aqueous Solution — Introduction to a Molecular Theory”, Plenum Press, New York (1974).

    Google Scholar 

  24. T. Kato, J. Phys. Chem., 89, 5750 (1985).

    Google Scholar 

  25. H. L. Freedman and R. Mills, J. Solution Chem., 10, 395 (1981).

    Google Scholar 

  26. Y. Kataoka, Fluid Phase Equilibria, 144, 257 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arai, Y., Sako, T., Takebayashi, Y. (2002). Solution Structure in Supercritical Fluids. In: Arai, Y., Sako, T., Takebayashi, Y. (eds) Supercritical Fluids. Springer Series in Materials Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56238-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56238-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62515-2

  • Online ISBN: 978-3-642-56238-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics