Skip to main content

Vascular Heterogeneity

  • Chapter
Pan Vascular Medicine

Abstract

The extent to which vessels vary in structure and function presents as a common, merely natural phenomenon to those studying vascular biology. This heterogeneity displayed in arterial, capillary, and venous structures may be explained easily by the varying local demands on these vascular structures. The thin permeable walls of capillaries, which are lined solely by endothelial cells, provide for easy exchange of nutrients, gases, and waste products in any part of the body. Larger conduit vessels, which serve for rapid and low resistance transport of blood over certain distances, can be easily recognized as sturdy, thick-walled arteries that supply bodily structures with blood, or thin-walled veins for drainage to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehbens WE (1996) Structural and architectural changes during arterial development and the role of hemodynamics. Acta Anat 157:261–274

    Article  CAS  PubMed  Google Scholar 

  2. Kirby ML, Hunt P, Wallis K, Thorogood P (1997) Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations. Dev Dyn 208:34–47

    Article  CAS  PubMed  Google Scholar 

  3. Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1999) Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc Res 41:87–99

    Article  CAS  PubMed  Google Scholar 

  4. Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells: specific markers. Arterioscler Tromb Vasc Biol 17:1193–1202

    Article  CAS  Google Scholar 

  5. Auerbach R, Alby L, Morrissey LW, Tu M, Joseph J (1985) Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 29:401–411

    Article  CAS  PubMed  Google Scholar 

  6. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrin B ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hiruma T, Hirakow R (1992) Histogenesis of tunica media of the chick aorta. Acta Anat Nippon 67:749–761

    CAS  PubMed  Google Scholar 

  8. Saint-Jeannet JP, Levi G, Girault JM, Koteliansky V, Thiery JP (1992) Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of a-smooth muscle actin. Development 115:1165–1173

    CAS  PubMed  Google Scholar 

  9. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system. Implications for vascular morphology? Circ Res 82:221–231

    Article  CAS  PubMed  Google Scholar 

  10. Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  11. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    Article  CAS  PubMed  Google Scholar 

  12. Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl) 199:367–378

    Article  Google Scholar 

  13. Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    Article  CAS  PubMed  Google Scholar 

  14. Nathan H, Gloobe H (1970) Myocardial atrio-venous junctions and extensions (sleeves) over the pulmonary and cavai veins. Anatomical observations in various mammals. Thorax 25:317–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Endo H, Ogawa K, Kurohmaru M, Hayashi Y (1996) Development of cardiac musculature in the cranial vena cava of rat embryos. Anat Embryol (Berl) 193:501–504

    CAS  Google Scholar 

  16. Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997) Differences in development of coronary arteries and veins. Cardiovasc Res 36:101–110

    Article  Google Scholar 

  17. DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    Article  Google Scholar 

  18. Owens GK (1996) Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ Res 79:1054–1055

    Article  CAS  PubMed  Google Scholar 

  19. Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32:275–292

    CAS  PubMed  Google Scholar 

  20. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  21. Beck L, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    CAS  PubMed  Google Scholar 

  22. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305

    Article  CAS  PubMed  Google Scholar 

  23. Heldin C-H, Östman A, Rönnstrand L (1998) Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 4378:F79–F113

    Google Scholar 

  24. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  25. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    Article  PubMed  Google Scholar 

  26. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-ß in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  Google Scholar 

  27. Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-defi-cient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    CAS  PubMed  Google Scholar 

  28. Yanagisawa H, Hammer RE, Richardson JA, Williams SC, Clouthier DE, Yanagisawa M (1998) Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102:22–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-ß, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  31. Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard J-C, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGFl64 and VEGFl88. Nat Med 5:495–502

    Article  CAS  PubMed  Google Scholar 

  32. Yamagishi H, Olson EN, Srivastava D (2000) The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 105:261–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Newman CS, Chia F, Krieg PA (1997) The XHex homeobox gene is expressed during development of the vascular endothelium: over-expression leads to an increase in vascular endothelial cell number. Mech Dev 66:83–93

    Article  CAS  PubMed  Google Scholar 

  35. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    Article  CAS  PubMed  Google Scholar 

  36. Takamura K, Okishima T, Ohdo S, Hayakawa K, Okamoto N (1990) Sequential observation of cardiac neural crest cell distribution in the developing heart: effects of transplantation regions. In: Clark EB, Takao A (eds) Developmental cardiology: morphogenesis and function. Mount Kisco, New York, pp 159–173

    Google Scholar 

  37. Poelmann RE, Gittenberger-de Groot AC (1999) A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? Dev Biol 207:271–286

    Article  CAS  PubMed  Google Scholar 

  38. Waldo KL, Kirby ML (1993) Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat Rec 237:385–399

    Article  CAS  PubMed  Google Scholar 

  39. Verberne ME, Gittenberger-de Groot AC, Poelmann RE (1998) Lineage and development of the parasympathetic nervous system of the embryonic chicken heart. Anat Embryol (Berl) 198:171–184

    Article  CAS  Google Scholar 

  40. Poelmann RE, Mikawa T, Gittenberger-de Groot AC (1998) Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 212:373–384

    Article  CAS  PubMed  Google Scholar 

  41. Bockman DE, Redmond ME, Kirby ML (1989) Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 225:209–217

    Article  CAS  PubMed  Google Scholar 

  42. Yablonka-Reuveni Z, Schwartz SM, Christ B (1995) Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell pheno-types emerging from a common lineage. Cell Mol Biol Res 41:241–249

    CAS  PubMed  Google Scholar 

  43. Bergwerff M, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1996) Onset of elastogenesis and downregulation of smooth muscle actin as distinguishing phenomena in artery differentiation in the chick embryo. Anat Embryol (Berl) 194:545–557

    CAS  Google Scholar 

  44. Wrenn RW, Raeuber CL, Herman LE, Walton WJ, Rosenquist TH (1993) Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells. In Vitro Cell Dev Biol 29A:73–78

    Article  Google Scholar 

  45. Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-ß. Dev Biol 178:430–445

    Article  CAS  Google Scholar 

  46. Fukiishi Y, Morriss-Kay GM (1992) Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res 268:1–8

    Article  CAS  PubMed  Google Scholar 

  47. Serbedzija GN, Bronner-Fraser M, Fraser SE (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116:297–307

    CAS  PubMed  Google Scholar 

  48. Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K (1996) Rhombomere formation and hind-brain crest cell migration from prorhom-bomeric origins in mouse embryos. Dev Growth Differ 38:107–118

    Article  Google Scholar 

  49. Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323

    Article  CAS  PubMed  Google Scholar 

  50. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, Kuratani S, Yamamura K (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203

    Article  CAS  PubMed  Google Scholar 

  51. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  52. Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE (1999) Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Tromb Vasc Biol 19:1589–1594

    Article  Google Scholar 

  53. Moss NS, Benditt EP (1970) The ultrastructure of spontaneous and experimentally induced arterial lesions II. The spontaneous plaque in the chicken. Lab Invest 23:231–245

    CAS  PubMed  Google Scholar 

  54. Hunt P, Gulisano M, Cook M, Sham M, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353:861–864

    Article  CAS  PubMed  Google Scholar 

  55. Krumlauf R (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9:106–112

    Article  CAS  PubMed  Google Scholar 

  56. Kuratani SC, Kirby ML (1991) Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest. Am J Anat 191:215–227

    Article  CAS  PubMed  Google Scholar 

  57. Miyagawa-Tomita S, Waldo K, Tornita H, Kirby ML (1991) Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras. Am J Anat 192:79–88

    Article  CAS  PubMed  Google Scholar 

  58. Shigetani Y, Aizawa S, Kuratani S (1995) Overlapping origins of pharyngeal arch crest cells on the postotic hind-brain. Dev Growth Differ 37:733–746

    Article  Google Scholar 

  59. Mallo M, Brandlin I (1997) Segmental identity can change independently in the hindbrain and rhombencephalic neural crest. Dev Dyn 210:146–156

    Article  CAS  PubMed  Google Scholar 

  60. Hunt P, Clarke JDW, Buxton P, Ferretti P, Thorogood P (1998) Stability and plasticity of neural crest patterning and branchial arch hox code after extensive cephalic crest rotation. Dev Biol 198:82–104

    Article  CAS  PubMed  Google Scholar 

  61. Veitch E, Begbie J, Schilling TF, Smith MM, Graham A (1999) Pharyngeal arch patterning in the absence of neural crest. Curr Biol 9:1481–1484

    Article  CAS  PubMed  Google Scholar 

  62. Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-de Groot AC (1999) Unique vascular morphology of the fourth aortic arches: possible implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 44:185–196

    Article  CAS  PubMed  Google Scholar 

  63. Congdon ED (1922) Transformation of the aortic arch system during the development of the human embryo. Carnegie Inst Contr Embryol 14:47–110

    Google Scholar 

  64. Kutsche LM, van Mierop LHS (1984) Cervical origin of the right subclavian artery in aortic arch interruption: pathogenesis and significance. Am J Cardiol 53:892–895

    Article  CAS  PubMed  Google Scholar 

  65. Oppenheimer-Dekker A, Gittenberger-de Groot AC, Roozendaal H (1982) The DA and associated cardiac anomalies in interruption of the aortic arch. Pediatr Cardiol 2:185–193

    Article  CAS  PubMed  Google Scholar 

  66. Molz G, Burri B (1978) Aberrant subclavian artery (arteria lusoria): sex differences in the prevalence of various forms of the malformation. Virchows Arch A 380:303–315

    Article  CAS  Google Scholar 

  67. Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini A (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497

    Article  CAS  PubMed  Google Scholar 

  68. Driscoll DA, Goldmuntz E, Emanuel BS (1995) Detection of 22q11 deletions in patients with conotruncal cardiac malformations, DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. In: Clark EB, Markwald RR, Takao A (eds) Developmental mechanisms of heart disease. Futura, Armonk, New York, pp 569–575

    Google Scholar 

  69. Momma K, Kondo C, Matsuoka R (1996) Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J Am Coll Cardiol 27:198–202

    Article  CAS  PubMed  Google Scholar 

  70. Momma K, Matsuoka R, Takao A (1999) Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatr Cardiol 20:97–102

    Article  CAS  PubMed  Google Scholar 

  71. Van Mierop LHS, Kutsche LM (1986) Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 58:133–137

    Article  PubMed  Google Scholar 

  72. Iida K, Koseki H, Kakinuma H, Kato N, Mizutani-Koseki Y, Ohuchi H, Yoshioka H, Noji S, Kawamura K, Kataoka Y, Ueno F, Taniguchi M, Yoshida N, Sugiyama T, Miura N (1997) Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124:4627–4638

    CAS  PubMed  Google Scholar 

  73. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    CAS  PubMed  Google Scholar 

  74. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    CAS  PubMed  Google Scholar 

  75. Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah Y-C, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379

    CAS  PubMed  Google Scholar 

  76. Bergwerff M, DeRuiter MC, Gittenberger-de Groot AC (1999) Comparative anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anat Embryol (Berl) 200:559–571

    Article  CAS  Google Scholar 

  77. DeRuiter MC, Gittenberger-de Groot AC, Rammos S, Poelmann RE (1989) The special status of the pulmonary arch artery in the branchial arch system of the rat. Anat Embryol (Berl) 179:319–325

    Article  Google Scholar 

  78. Kuratani SC, Wall NA (1992) Expression of Hox 2.1 protein in restricted populations of neural crest cells and pharyngeal ectoderm. Dev Dyn 195:15–28

    Article  CAS  PubMed  Google Scholar 

  79. Rancourt DE, Tsuzuki T, Capecchi MR (1995) Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplemen-tation. Genes Dev 9:108–122

    Article  CAS  PubMed  Google Scholar 

  80. Colbert MC, Kirby ML, Robbins J (1996) Endogenous retinoic acid signaling colocalizes with advanced expression of the adult smooth muscle myosin heavy chain isoform during development of the ductus arteriosus. Circ Res 78:790–798

    Article  CAS  PubMed  Google Scholar 

  81. Leussink B, Brouwer A, El Khattabi M, Poelmann RE, Gittenberger-de Groot AC, Meijlink F (1995) Expression patterns of the paired-related homeobox genes MHox/Prx1 and S8/Prx2 suggest roles in development of the heart and the forebrain. Mech Dev 52:51–64

    Article  CAS  PubMed  Google Scholar 

  82. Bergwerff M, Gittenberger-de Groot AC, DeRuiter MC, van Iperen L, Meijlink F, Poelmann RE (1998) Patterns of paired-related homeobox genes PRX1 and PRX2 suggest involvement in matrix modulation in the developing chick vascular system. Dev Dyn 213:59–70

    Article  CAS  PubMed  Google Scholar 

  83. Kim H-S, Aikawa M, Kimura K, Kuroo M, Nakahara K, Suzuki T, Katoh H, Okamoto E, Yazaki Y, Nagai R (1993) Ductus arteriosus. Advanced differentiation of smooth muscle cells demonstrated by myosin heavy chain isoform expression in rabbits. Circulation 88:1804–1810

    Article  CAS  PubMed  Google Scholar 

  84. Slomp J, Gittenberger-de Groot AC, Glukhova MA, van Munsteren JC, Kockx MM, Schwartz SM, Koteliansky VE (1997) Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Tromb Vasc Biol 17:1003–1009

    Article  CAS  Google Scholar 

  85. Gittenberger-de Groot AC, Slomp J, DeRuiter MC, Poelmann RE (1995) Smooth muscle cell differentiation during early development and during intimai thickening formation in the ductus arteriosus. In: Schwartz SM, Mecham R (eds) The vascular smooth muscle cell. Molecular and biological responses to the extracellular matrix. Academic, San Diego, pp 17–36

    Chapter  Google Scholar 

  86. Hörnblad PY (1967) Studies on closure of the ductus arteriosus. III. Species differences in closure rate and morphology. Cardiologia 51:262–282

    Article  PubMed  Google Scholar 

  87. Shaner RF (1956) The persisting right sixth aortic arch of mammals, with a note on fetal coarctation. Anat Rec 125:171–184

    Article  CAS  PubMed  Google Scholar 

  88. Gittenberger-de Groot AC, Strengers JLM, Mentink M, Poelmann RE, Patterson DF (1985) Histologic studies on normal and persistent ductus arteriosus in the dog. J Am Coll Cardiol 6:394–404

    Article  Google Scholar 

  89. Gittenberger-de Groot AC, Moulaert AJM, Hitchcock JF (1980) Histology of the persistent ductus arteriosus in cases of congenital rubella. Circulation 62:183–186

    Article  Google Scholar 

  90. Patterson DF, Pyle RL, Buchanan JW, Trautvetter E, Abt DA (1971) Hereditary patent ductus arteriosus and its sequelae in the dog. Circ Res 29:1–13

    Article  CAS  PubMed  Google Scholar 

  91. Cassels DE, Bharati S, Lev M (1975) The natural history of the ductus arteriosus in association with other congenital heart defects. Perspect Biol Med 18:541–571

    CAS  PubMed  Google Scholar 

  92. Elzenga NJ, Gittenberger-de Groot AC (1986) The ductus arteriosus and stenoses of the pulmonary arteries in pulmonary atresia. Int J Cardiol 11:195–208

    Article  CAS  PubMed  Google Scholar 

  93. Stuckey D, Bowdler JD, Reye RDK (1968) Absent sixth aortic arch: a form of pulmonary atresia. Br Heart J 30:258–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Blustajn J, Netchine I, Frédy D, Bakouche P, Piekarski JD, Meder JF (1999) Dysgenesis of the internal carotid artery associated with transsphenoidal encephalocele: a neural crest syndrome? Am J Neuroradiol 20:1154–1157

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergwerff, M., DeRuiter, M.C., Poelmann, R.E., Groot, A.C.Gd. (2002). Vascular Heterogeneity. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics