Skip to main content

Molecular and Cellular Hemostasis and Fibrinolysis

  • Chapter
Pan Vascular Medicine

Abstract

Vascular damage triggers a combination of tightly integrated processes that may be subdivided into initiation of coagulation, propagation of thrombin formation, termination of the procoagulant reactions, elimination of the resulting clot, and tissue repair and regeneration [1, 2]. This collection of processes is subject to precise control, which localizes the response to the injured area, provides a level of response appropriate to the extent of injury, and maintains vascular hydraulic integrity until tissue repair is complete. The terms initiation, propagation, termination, elimination, and regeneration are useful to describe these discrete events, but all of these processes are highly intertwined and occur concomitantly (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenny NS, Mann KG (1998) Coagulation cascade: an overview. In: Loscalzo J, Schafer AI (eds) Thrombosis and hemorrhage. Williams and Wilkins, Baltimore, pp 3–27

    Google Scholar 

  2. Mann KG (1992) Normal hemostasis. In: Kelley WN (ed) Textbook of internal medicine. Lippincott, Philadelphia, pp 1240–1245

    Google Scholar 

  3. Kalafatis M, Swords NA, Rand MD, Mann KG (1994) Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes. Biochim Biophys Acta 1227:113–129

    PubMed  Google Scholar 

  4. Lane DA, Olds RJ, Thein SL (2000) Antithrombin and its deficiency. In: Bloom AL, Forbes CD, Thomas DP et al (eds) Haemostasis and thrombosis. Churchill Livingstone, New York, pp 655–670

    Google Scholar 

  5. Olson ST, Bjork I, Shore JD (1993) Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol 222:525–559

    CAS  PubMed  Google Scholar 

  6. Broze GJ Jr (1987) Tissue-factor inhibitor is also a factor Xa inhibitor. Clin Res 35:597

    Google Scholar 

  7. Rosenberg RD, Rosenberg JS (1984) Natural anticoagulant mechanisms. J Clin Invest 74:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Petersen TE, Dudek-Wojciechowska G, Sottrup-Jensen L et al (1979) Primary structure of antithrombin-III (heparin cofactor). In: Collen D, Wiman B, Verstrate M (eds) The physiological inhibitors of coagulation and fibrinolysis. Elsevier, Amsterdam, PP 43–54

    Google Scholar 

  9. Thaler E, Lechner K (1981) Antithrombin III deficiency and thromboembolism. Clin Haematol 10:369–390

    CAS  PubMed  Google Scholar 

  10. Demers C, Ginsberg JS, Hirsh J, Henderson P, Blajchman MA (1992) Thrombosis in antithrombin-III-deficient persons. Report of a large kindred and literature review. Ann Intern Med 116:754–761

    CAS  PubMed  Google Scholar 

  11. Hathaway WE (1991) Clinical aspects of antithrombin III deficiency. Semin Hematol 28:19–23

    CAS  PubMed  Google Scholar 

  12. Novotny WF, Brown SG, Miletich JP, Rader DJ, Broze GJ Jr (1991) Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples. Blood 78:387–393

    CAS  PubMed  Google Scholar 

  13. Rapaport SI (1991) The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb Haemost 66:6–15

    CAS  PubMed  Google Scholar 

  14. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP (1988) The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71:335–343

    CAS  PubMed  Google Scholar 

  15. Sandset PM, Sirnes PA, Abildgaard U (1989) Factor VII and extrinsic pathway inhibitor in acute coronary disease. Br J Haematol 72:391–396

    CAS  PubMed  Google Scholar 

  16. Sandset PM, Warn-Cramer BJ, Rao LV, Maki SL, Rapaport SI (1991) Depletion of extrinsic pathway inhibitor (EPI) sensitizes rabbits to disseminated intravascular coagulation induced with tissue factor: evidence supporting a physiologic role for EPI as a natural anticoagulant. Proc Natl Acad Sci U S A 88:708–712

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Day KC, Hoffman LC, Palmier MO, Kretzmer KK, Huang MD, Pyla EY, Spokas E, Broze GJ Jr, Warren TG, Wun TC (1990) Recombinant lipoprotein-associated coagulation inhibitor inhibits tissue thromboplastin-induced intravascular coagulation in the rabbit. Blood 76:1538–1545

    CAS  PubMed  Google Scholar 

  18. Ellis V, Pyke C, Eriksen J, Solberg H, Dano K (1992) The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann N Y Acad Sci 667:13–31

    CAS  PubMed  Google Scholar 

  19. Bar-Shavit R, Benezra M, Eldor A, Hy-Am E, Fenton JW, Wilner GD, Vlodavsky I (1990) Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regul 1:453–463

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD (1986) Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci U S A 83:976–980

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Singh JP, Chaikin MA, Stiles CD (1982) Phylogenetic analysis of platelet-derived growth factor by radio-receptor assay. J Cell Biol 95:667–671

    CAS  PubMed  Google Scholar 

  22. Huang JS, Huang SS, Deuel TF (1983) Human platelet-derived growth factor: radioimmunoassay and discovery of a specific plasma-binding protein. J Cell Biol 97:383–388

    CAS  PubMed  Google Scholar 

  23. Antoniades HN, Scher CD, Stiles CD (1979) Purification of human platelet-derived growth factor. Proc Natl Acad Sci USA 76:1809–1813

    CAS  PubMed  Google Scholar 

  24. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 258:7155–7160

    CAS  PubMed  Google Scholar 

  25. Hsuan JJ (1989) Transforming growth factors beta. Br Med Bull 45:425–437

    CAS  PubMed  Google Scholar 

  26. Oka Y, Orth DN (1983) Human plasma epidermal growth factor/beta-urogastrone is associated with blood platelets. J Clin Invest 72:249–259

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Daniel TO, Gibbs VC, Milfay DF, Garovoy MR, Williams LT (1986) Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J Biol Chem 261:9579–9582

    CAS  PubMed  Google Scholar 

  28. Nelsestuen GL, Shah AM, Harvey SB (2000) Vitamin K-dependent proteins. Vitam Horm 58:355–389

    CAS  PubMed  Google Scholar 

  29. Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 93:1798–1808

    CAS  PubMed  Google Scholar 

  30. Stenflo J (1999) Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 9:59–88

    CAS  PubMed  Google Scholar 

  31. Magnusson S, Sottrup-Jensen L, Petersen TE, Morris HR, Dell A (1974) Primary structure of the vitamin K-dependent part of prothrombin. FEBS Lett 44:189–193

    CAS  PubMed  Google Scholar 

  32. Stenflo J, Ferlund P, Egan W, Roepstorff P (1974) Vitamin K-dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A 71:2730–2733

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Stenflo J (1974) Vitamin K and the biosynthesis of prothrombin. IV Isolation of peptides containing prosthetic groups from normal prothrombin and the corresponding peptides from dicoumarol-induced prothrombin. J Biol Chem 249:5527–5535

    CAS  PubMed  Google Scholar 

  34. Nelsestuen GL, Zytkovicz TH, Howard JB (1974) The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem 249:6347–6350

    CAS  PubMed  Google Scholar 

  35. Scott DL, White SP, Browning JL, Rosa JJ, Gelb MH, Sigler PB (1991) Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 254:1007–1010

    CAS  PubMed  Google Scholar 

  36. McDonald JF, Evans TC Jr, Emeagwali DB, Hariharan M, Allewell NM, Pusey ML, Shah AM, Nelsestuen GL (1997) Ionic properties of membrane association by vitamin K-dependent proteins: the case for univalency. Biochemistry 36:15589–15598

    CAS  PubMed  Google Scholar 

  37. Lu Y, Nelsestuen GL (1996) Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: implications for protein-membrane contact. Biochemistry 35:8193–8200

    CAS  PubMed  Google Scholar 

  38. Christiansen WT, Jalbert LR, Robertson RM, Jhingan A, Prorok M, Castellino FJ (1995) Hydrophobic amino acid residues of human anticoagulation protein C that contribute to its functional binding to phospholipid vesicles. Biochemistry 34:10376–10382

    CAS  PubMed  Google Scholar 

  39. Seshadri TP, Skrzypczak-Jankun E, Yin M, Tulinsky A (1994) Differences in the metal ion structure between Sr- and Ca-prothrombin fragment 1. Biochemistry 33:1087–1092

    CAS  PubMed  Google Scholar 

  40. Freedman SJ, Blostein MD, Baleja JD, Jacobs M, Furie BC, Furie B (1996) Identification of the phospholipid binding site in the vitamin K-dependent blood coagulation protein factor IX. J Biol Chem 271: 16227–16236

    CAS  PubMed  Google Scholar 

  41. Zhang L, Castellino FJ (1994) The binding energy of human coagulation protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the gamma-carboxyglutamic acid domain. J Biol Chem 269:3590–3595

    CAS  PubMed  Google Scholar 

  42. Stenflo J, Stenberg Y, Muranyi A (2000) Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim Biophys Acta 1477:51–63

    CAS  PubMed  Google Scholar 

  43. McMullen BA, Fujikawa K, Kisiel W (1983) The occurrence of beta-hydroxyaspartic acid in the vitamin K-dependent blood coagulation zymogens. Biochem Biophys Res Commun 115:8–14

    CAS  PubMed  Google Scholar 

  44. Stenflo J, Ohlin AK, Owen WG, Schneider WJ (1988) beta-Hydrox-yaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin. J Biol Chem 263:21–24

    Google Scholar 

  45. Gronke RS, VanDusen WJ, Garsky VM, Jacobs JW, Sardana MK, Stern AM, Friedman PA (1989) Aspartyl beta-hydroxylase: in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX. Proc Natl Acad Sci U SA 86:3609–3613

    CAS  Google Scholar 

  46. Prendergast FG, Mann KG (1977) Differentiation of metal ion-induced transitions of prothrombin fragment 1. J Biol Chem 252:840–850

    CAS  PubMed  Google Scholar 

  47. Soriano-Garcia M, Park CH, Tulinsky A, Ravichandran KG, Skrzypczak-Jankun E (1989) Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry 28:6805–6810

    CAS  PubMed  Google Scholar 

  48. Gardill SL, Suttie JW (1990) Vitamin K epoxide and quinone reductase activities. Evidence for reduction by a common enzyme. Biochem Pharmacol 40:1055–1061

    CAS  PubMed  Google Scholar 

  49. Fasco MJ, Principe LM (1980) Vitamin K1 hydroquinone formation catalyzed by a microsomal reductase system. Biochem Biophys Res Commun 97:1487–1492

    CAS  PubMed  Google Scholar 

  50. Furie B, Furie BC (1990) Molecular basis of vitamin K-dependent gamma-carboxylation. Blood 75:1753–1762

    CAS  PubMed  Google Scholar 

  51. Lollar P, Hill-Eubanks DC, Parker CG (1988) Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 263:10451–10455

    CAS  PubMed  Google Scholar 

  52. Cosgriff SW (1956) The effectiveness of an oral vitamin K in controlling excessive hypothrombinemia during anticoagulant therapy. Ann Intern Med 45:14–22

    CAS  PubMed  Google Scholar 

  53. Hirsh J (1995) Optimal intensity and monitoring warfarin. Am J Cardiol 75:39B–426

    Google Scholar 

  54. Hirsh J, Dalen JE, Deykin D, Poller L, Bussey H (1995) Oral anticoagulants. Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 108:231S–246S

    Google Scholar 

  55. Lundblad RL, Kingdon HS, Mann KG (1976) Thrombin. Methods Enzymol 45:156–176

    CAS  PubMed  Google Scholar 

  56. Kisiel W, Hanahan DJ (1973) Purification and characterization of human Factor II. Biochim Biophys Acta 304:103–113

    CAS  PubMed  Google Scholar 

  57. Deguchi H, Takeya H, Gabazza EC, Nishioka J, Suzuki K (1997) Prothrombin kringle 1 domain interacts with factor Va during the assembly of prothrombinase complex. Biochem J 321:729–735

    CAS  PubMed  Google Scholar 

  58. Sugo T, Nakamikawa C, Tanabe S, Matsuda M (1995) Activation of prothrombin by factor Xa bound to the membrane surface of human umbilical vein endothelial cells: its catalytic efficiency is similar to that of prothrombinase complex on platelets. J Biochem (Tokyo) 117:244–250

    CAS  Google Scholar 

  59. Bajaj SP, Butkowski RJ, Mann KG (1975) Prothrombin fragments. Ca2+ binding and activation kinetics. J Biol Chem 250:2150–2156

    CAS  PubMed  Google Scholar 

  60. Kotkow KJ, Deitcher SR, Furie B, Furie BC (1995) The second kringle domain of prothrombin promotes factor Va-mediated prothrombin activation by prothrombinase. J Biol Chem 270:4551–4557

    CAS  PubMed  Google Scholar 

  61. Krishnaswamy S, Walker RK (1997) Contribution of the prothrombin fragment 2 domain to the function of factor Va in the prothrombinase complex. Biochemistry 36:3319–3330

    CAS  PubMed  Google Scholar 

  62. Krishnaswamy S, Mann KG, Nesheim ME (1986) The prothrombinase-catalyzed activation of prothrombin proceeds through the intermediate meizothrombin in an ordered, sequential reaction. J Biol Chem 261:8977–8984

    CAS  PubMed  Google Scholar 

  63. Doyle MF, Mann KG (1990) Multiple active forms of thrombin. IV. Relative activities of meizothrombins. J Biol Chem 265:10693–10701

    CAS  PubMed  Google Scholar 

  64. Myrmel KH, Lundblad RL, Mann KG (1976) Characteristics of the association between prothrombin fragment 2 and alpha-thrombin. Biochemistry 15:1767–1773

    CAS  PubMed  Google Scholar 

  65. Nesheim ME, Abbott T, Jenny R, Mann KG (1988) Evidence that the thrombin-catalyzed feedback cleavage of fragment 1.2 at Arg154-Ser155 promotes the release of thrombin from the catalytic surface during the activation of bovine prothrombin. J Biol Chem 263: 1037–1044

    CAS  PubMed  Google Scholar 

  66. Sun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, Holmback K, Xiao Q, Bugge TH, Degen SJ (1998) Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA 95:7597–7602

    CAS  PubMed  Google Scholar 

  67. Rouvier J, Braude R, Altman R (1975) Proceedings: fibrinogenolysis: studies on its degradation products. Thromb Diath Haemorrh 34:340

    CAS  PubMed  Google Scholar 

  68. Roberts HR, Lefkowitz JB (1994) Inherited disorders of prothrombin conversion. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principals and clinical practice. Lippincott, Philadelphia, pp 200–218

    Google Scholar 

  69. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703

    CAS  PubMed  Google Scholar 

  70. Kisiel W, Davie EW (1975) Isolation and characterization of bovine factor VII. Biochemistry 14:4928–4934

    CAS  PubMed  Google Scholar 

  71. Bajaj SP, Rapaport SI, Brown SF (1981) Isolation and characterization of human factor VII. Activation of factor VII by factor Xa. J Biol Chem 256:253–259

    CAS  PubMed  Google Scholar 

  72. Wildgoose P, Nemerson Y, Hansen LL, Nielsen FE, Glazer S, Hedner U (1992) Measurement of basal levels of factor VIIa in hemophilia A and B patients. Blood 80:25–28

    CAS  PubMed  Google Scholar 

  73. Radcliffe R, Nemerson Y (1975) Activation and control of factor VII by activated factor X and thrombin. Isolation and characterization of a single chain form of factor VII. J Biol Chem 250:388–395

    CAS  PubMed  Google Scholar 

  74. Seligsohn U, Osterud B, Brown SF, Griffin JH, Rapaport SI (1979) Activation of human factor VII in plasma and in purified systems: roles of activated factor IX, kallikrein, and activated factor XII. J Clin Invest 64:1056–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Lawson JH, Butenas S, Mann KG (1992) The evaluation of complex-dependent alterations in human factor VIIa. J Biol Chem 267:4834–4843

    CAS  PubMed  Google Scholar 

  76. Kisiel W, Fujikawa K, Davie EW (1977) Activation of bovine factor VII (proconvertin) by factor XIIa (activated Hageman factor). Biochemistry 16:4189–4194

    CAS  PubMed  Google Scholar 

  77. Neuenschwander PF, Fiore MM, Morrissey JH (1993) Factor VII autoactivation proceeds via interaction of distinct protease-cofactor and zymogen-cofactor complexes. Implications of a two-dimensional enzyme kinetic mechanism. J Biol Chem 268:21489–21492

    CAS  PubMed  Google Scholar 

  78. Lawson JH, Krishnaswamy S, Butenas S, Mann KG (1993) Extrinsic pathway proteolytic activity. Methods Enzymol 222:177–195

    CAS  PubMed  Google Scholar 

  79. Pedersen AH, Lund-Hansen T, Komiyama Y, Petersen LC, Oester-gard PB, Kisiel W (1991) Inhibition of recombinant human blood coagulation factor VIIa amidolytic and proteolytic activity by zinc ions. Thromb Haemost 65:528–534

    CAS  PubMed  Google Scholar 

  80. Petersen LC, Olsen OH, Nielsen LS, Freskgard PO, Persson E (2000) Binding of Zn2+ to a Ca2+ loop allosterically attenuates the activity of factor VIIa and reduces its affinity for tissue factor. Protein Sci 9:859–866

    CAS  PubMed  Google Scholar 

  81. Lawson JH, Butenas S, Ribarik N, Mann KG (1993) Complex-dependent inhibition of factor VIIa by antithrombin III and heparin. J Biol Chem 268:767–770

    CAS  PubMed  Google Scholar 

  82. Briet E, Onvlee G (1987) Hip surgery in a patient with severe factor VII deficiency. Haemostasis 17:273–277

    CAS  PubMed  Google Scholar 

  83. Mariani G, Mazzucconi MG, Hermans J, Ciavarella N, Faiella A, Hassan HJ, Mannucci PM, Nenci GG, Orlando M, Romoli D, Mandelli F (1981) Factor VII deficiency: immunological characterization of genetic variants and detection of carriers. Br J Haematol 48:7–14

    CAS  PubMed  Google Scholar 

  84. Hall S, Rapaport SI, Amiral J (1964) A clinical and family study of hereditary proconvertin (factor VII) deficiency. Am J Med 37:172–181

    CAS  PubMed  Google Scholar 

  85. Hedner U, Glazer S, Pingel K, Alberts KA, Blomback M, Schulman S, Johnsson H (1988) Successful use of recombinant factor VIIa in patient with severe haemophilia A during synovectomy (letter). Lancet 2:1193

    CAS  PubMed  Google Scholar 

  86. Hedner U (1998) Recombinant activated factor VII as a universal haemostatic agent. Blood Coagul Fibrinolysis 9 [Suppl 1]:S147–S152

    Google Scholar 

  87. Thompson AR (1986) Structure, function, and molecular defects of factor IX. Blood 67:565–572

    CAS  PubMed  Google Scholar 

  88. Fujikawa K, Davie EW (1976) Bovine factor IX (Christmas factor). Methods Enzymol 45:74–83

    CAS  PubMed  Google Scholar 

  89. Jackson CM, Nemerson Y (1980) Blood coagulation. Annu Rev Biochem 49:765–811

    CAS  PubMed  Google Scholar 

  90. Osterud B, Rapaport SI (1977) Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 74:5260–5264

    CAS  PubMed  Google Scholar 

  91. Baglia FA, Sinha D, Walsh PN (1989) Functional domains in the heavy-chain region of factor XI: a high molecular weight kininogen-binding site and a substrate-binding site for factor IX. Blood 74:244–251

    CAS  PubMed  Google Scholar 

  92. Kurachi K, Fujikawa K, Schmer G, Davie EW (1976) Inhibition of bovine factor IXa and factor Xab by antithrombin III. Biochemistry 15:373–377

    CAS  PubMed  Google Scholar 

  93. Braunstein KM, Noyes CM, Griffith MJ, Lundblad RL, Roberts HR (1981) Characterization of the defect in activation of factor IX Chapel Hill by human factor XIa. J Clin Invest 68:1420–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Griffith MJ, Breitkreutz L, Trapp H, Briet E, Noyes CM, Lundblad RL, Roberts HR (1985) Characterization of the clotting activities of structurally different forms of activated factor IX. Enzymatic properties of normal human factor IXa alpha, factor IXa beta, and activated factor IX Chapel Hill. J Clin Invest 75:4–10

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lawson JH, Mann KG (1991) Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem 266:11317–11327

    CAS  PubMed  Google Scholar 

  96. Biggs R, Douglas AS, MacFarlane RG (1952) Christmas disease: a condition previously mistaken for hemophilia. Br Med J 2:1384

    Google Scholar 

  97. Thompson AR, Chen SH (1993) Characterization of factor IX defects in hemophilia B patients. Methods Enzymol 222:143–169

    CAS  PubMed  Google Scholar 

  98. Giannelli F, Green PM, Sommer SS, Poon MC, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Figueiredo MS, Brownlee GG (1997) Haemophilia B: database of point mutations and short additions and deletions, 7th edn. Nucleic Acids Res 25:133–135

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Reiner AP, Davie EW (1994) The physiology and biochemistry of factor IX. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EG (eds) Haemostasis and thrombosis. Churchill Livingstone, New York, pp 309–331

    Google Scholar 

  100. Cherington V, Chiang GG, McGrath CA, Gaffney A, Galanopoulos T, Merrill W, Bizinkauskas CB, Hansen M, Sobolewski J, Levine PH, Greenberger JS, Hurwitz DR (1998) Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion. Hum Gene Ther 9:1397–1407

    CAS  PubMed  Google Scholar 

  101. White SJ, Page SM, Margaritis P, Brownlee GG (1998) Long-term expression of human clotting factor IX from retrovirally transduced primary human keratinocytes in vivo. Hum Gene Ther 9:1187–1195

    CAS  PubMed  Google Scholar 

  102. Di Scipio RG, Hermodson MA, Davie EW (1977) Activation of human factor X (Stuart factor) by a protease from Russell’s viper venom. Biochemistry 16:5253–5260

    PubMed  Google Scholar 

  103. Davie EW, Fujikawa K, Kurachi K, Kisiel W (1979) The role of serine proteases in the blood coagulation cascade. Adv Enzymol Relat Areas Mol Biol 48:277–318

    CAS  PubMed  Google Scholar 

  104. Osterud B, Rapaport SI (1970) Synthesis of intrinsic factor X activator. Inhibition of the function of formed activator by antibodies to factor VIII and to factor IX. Biochemistry 9:1854–1861

    CAS  PubMed  Google Scholar 

  105. Jesty J, Silverberg SA (1979) Kinetics of the tissue factor-dependent activation of coagulation Factors IX and X in a bovine plasma system. J Biol Chem 254:12337–12345

    CAS  PubMed  Google Scholar 

  106. Kerbiriou DM, Griffin JH (1979) Human high molecular weight kininogen. Studies of structure-function relationships and of proteolysis of the molecule occurring during contact activation of plasma. J Biol Chem 254:12020–12027

    CAS  PubMed  Google Scholar 

  107. Girolami A, Coser P, Brunetti A, Prinoth O (1975) Classical factor X deficiency. Report of a further case. Acta Haematol 53:118–127

    CAS  PubMed  Google Scholar 

  108. Egberg N, Heedman PA (1982) Simplified performance of amidolytic factor X assay. Thromb Res 25:437–440

    CAS  PubMed  Google Scholar 

  109. Ewing NP, Kasper CK (1982) In vitro detection of mild inhibitors to factor VIII in hemophilia. Am J Clin Pathol 77:749–752

    CAS  PubMed  Google Scholar 

  110. Esmon CT (1984) Protein C. Prog Hemost Thromb 7:25–54

    CAS  PubMed  Google Scholar 

  111. Stenflo J (1984) Structure and function of protein C. Semin Thromb Hemost 10:109–121

    CAS  PubMed  Google Scholar 

  112. Kisiel W, Canfield WM (1981) Snake venom proteases that activate blood-coagulation factor V. Methods Enzymol 80:275–285

    CAS  PubMed  Google Scholar 

  113. Kisiel W (1979) Human plasma protein C: isolation, characterization, and mechanism of activation by alpha-thrombin. J Clin Invest 64:761–769

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lu D, Kalafatis M, Mann KG, Long GL (1996) Comparison of activated protein C/protein S-mediated inactivation of human factor VIII and factor V. Blood 87:4708–4717

    CAS  PubMed  Google Scholar 

  115. Dahlback B, Carlsson M, Svensson PJ (1993) Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 90: 1004–1008

    CAS  PubMed  Google Scholar 

  116. Seligsohn U, Berger A, Abend M, Rubin L, Attias D, Zivelin A, Rapaport SI (1984) Homozygous protein C deficiency manifested by massive venous thrombosis in the newborn. N Engl J Med 310: 559–562

    CAS  PubMed  Google Scholar 

  117. Bertina RM (2000) Protein C deficiency and venous thrombosis—the search for the second genetic defect. Thromb Haemost 83:360–361

    CAS  PubMed  Google Scholar 

  118. Hasstedt SJ, Bovill EG, Callas PW, Long GL (1998) An unknown genetic defect increases venous thrombosis risk, through interaction with protein C deficiency. Am J Hum Genet 63:569–576

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Lu D, Bovill EG, Long GL (1994) Molecular mechanism for familial protein C deficiency and thrombosis in protein C Vermont (Glu20 → Ala and Val34 → Met). J Biol Chem 269:29032–29038

    CAS  PubMed  Google Scholar 

  120. Bovill EG, Hasstedt SJ, Leppert MF, Long GL (1999) Hereditary thrombophilia as a model for multigenic disease. Thromb Haemost 82:662–666

    CAS  PubMed  Google Scholar 

  121. Thompson AR (1994) Molecular genetics of hemostatic proteins. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott, Philadelphia, pp 55–80

    Google Scholar 

  122. Lu D, Kalafatis M, Mann KG, Long GL (1994) Loss of membrane-dependent factor Va cleavage: a mechanistic interpretation of the pathology of protein C Vermont. Blood 84:687–690

    CAS  PubMed  Google Scholar 

  123. Rintala E, Seppala OP, Kotilainen P, Pettila V, Rasi V (1998) Protein C in the treatment of coagulopathy in meningococcal disease. Crit Care Med 26:965–968

    CAS  PubMed  Google Scholar 

  124. Maruyama I (1999) Recombinant thrombomodulin and activated protein C in the treatment of disseminated intravascular coagulation. Thromb Haemost 82:718–721

    CAS  PubMed  Google Scholar 

  125. Nelsestuen GL (1999) Enhancement of vitamin K-dependent protein function by modification of the gamma-carboxyglutamic acid domain: studies of protein C and factor VII. Trends Cardiovasc Med 9:162–167

    CAS  PubMed  Google Scholar 

  126. Dahlback B (1983) Purification of human C4b-binding protein and formation of its complex with vitamin K-dependent protein S. Biochem J 209:847–856

    CAS  PubMed  Google Scholar 

  127. Lu D, Xie RL, Rydzewski A, Long GL (1997) The effect of N-linked glycosylation on molecular weight, thrombin cleavage, and functional activity of human protein S. Thromb Haemost 77:1156–1163

    CAS  PubMed  Google Scholar 

  128. Di Scipio RG, Hermodson MA, Yates SG, Davie EW (1977) A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry 16:698–706

    PubMed  Google Scholar 

  129. Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG (1991) Key residues involved in calcium-binding motifs in EGF-like domains. Nature 351:164–167

    CAS  PubMed  Google Scholar 

  130. Rao Z, Handford P, Mayhew M, Knott V, Brownlee GG, Stuart D (1995) The structure of a Ca(2+)-binding epidermal growth factorlike domain: its role in protein-protein interactions. Cell 82:131–141

    CAS  PubMed  Google Scholar 

  131. Pauls JE, Hockin MF, Long GL, Mann KG (2000) Self-association of human protein S. Biochemistry 39:5468–5473

    CAS  PubMed  Google Scholar 

  132. Walker FJ (1980) Regulation of activated protein C by a new protein. A possible function for bovine protein S. J Biol Chem 255:5521–5524

    CAS  PubMed  Google Scholar 

  133. Suzuki K, Nishioka J, Matsuda M, Murayama H, Hashimoto S (1984) Protein S is essential for the activated protein C-catalyzed inactivation of platelet-associated factor Va. J Biochem (Tokyo) 96:455–460

    CAS  Google Scholar 

  134. Walker FJ (1984) Protein S and the regulation of activated protein C. Semin Thromb Hemost 10:131–138

    CAS  PubMed  Google Scholar 

  135. Solymoss S, Tucker MM, Tracy PB (1988) Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection. J Biol Chem 263:14884–14890

    CAS  PubMed  Google Scholar 

  136. Walker FJ, Chavin SI, Fay PJ (1987) Inactivation of factor VIII by activated protein C and protein S. Arch Biochem Biophys 252:322–328

    CAS  PubMed  Google Scholar 

  137. Walker FJ (1984) Regulation of vitamin K-dependent protein S. Inactivation by thrombin. J Biol Chem 259:10335–10339

    CAS  PubMed  Google Scholar 

  138. Koedam JA, Meijers JC, Sixma JJ, Bouma BN (1988) Inactivation of human factor VIII by activated protein C. Cofactor activity of protein S and protective effect of von Willebrand factor. J Clin Invest 82:1236–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Heeb MJ, Rosing J, Bakker HM, Fernandez JA, Tans G, Griffin JH (1994) Protein S binds to and inhibits factor Xa. Proc Natl Acad Sci USA 91:2728–2732

    CAS  PubMed  Google Scholar 

  140. Heeb MJ, Mesters RM, Tans G, Rosing J, Griffin JH (1993) Binding of protein S to factor Va associated with inhibition of prothrombi-nase that is independent of activated protein C. J Biol Chem 268: 2872–2877

    CAS  PubMed  Google Scholar 

  141. Butenas S, van’t Veer C, Mann KG (1999) “Normal” thrombin generation. Blood 94:2169–2178

    CAS  PubMed  Google Scholar 

  142. Mitchell CA, Kelemen SM, Salem HH (1988) The anticoagulant properties of a modified form of protein S. Thromb Haemost 60:298–304

    CAS  PubMed  Google Scholar 

  143. Mahasandana C, Suvatte V, Chuansumrit A, Marlar RA, Manco-Johnson MJ, Jacobson LJ, Hathaway WE (1990) Homozygous protein S deficiency in an infant with purpura fulminans. J Pediatr 117:750–753

    CAS  PubMed  Google Scholar 

  144. Comp PC, Nixon RR, Cooper MR, Esmon CT (1984) Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest 74:2082–2088

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Craig A, Taberner DA, Fisher AH, Foster DN, Mitra J (1990) Type I protein S deficiency and skin necrosis. Postgrad Med J 66:389–391

    CAS  PubMed  Google Scholar 

  146. Chafa O, Fischer AM, Meriane F, Chellali F, Rahal S, Sternberg C, Benabadji M (1989) A new case of ‘type II’ inherited protein S deficiency. Br J Haematol 73:501–505

    CAS  PubMed  Google Scholar 

  147. Broze GJ Jr, Miletich JP (1984) Human protein Z. J Clin Invest 73:933–938

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Miletich JP, Broze GJ Jr (1987) Human plasma protein Z antigen: range in normal subjects and effect of warfarin therapy. Blood 69:1580–1586

    CAS  PubMed  Google Scholar 

  149. Sejima H, Hayashi T, Deyashiki Y, Nishioka J, Suzuki K (1990) Primary structure of vitamin K-dependent human protein Z. Biochem Biophys Res Commun 171:661–668

    CAS  PubMed  Google Scholar 

  150. Ichinose A, Takeya H, Espling E, Iwanaga S, Kisiel W, Davie EW (1990) Amino acid sequence of human protein Z, a vitamin K-dependent plasma glycoprotein. Biochem Biophys Res Commun 172:1139–1144

    CAS  PubMed  Google Scholar 

  151. Hogg PJ, Stenflo J (1991) Interaction of vitamin K-dependent protein Z with thrombin. Consequences for the amidolytic activity of thrombin and the interaction of thrombin with phospholipid vesicles. J Biol Chem 266:10953–10958

    CAS  PubMed  Google Scholar 

  152. Hogg PJ, Stenflo J (1991) Interaction of human protein Z with thrombin: evaluation of the species difference in the interaction between bovine and human protein Z and thrombin. Biochem Biophys Res Commun 178:801–807

    CAS  PubMed  Google Scholar 

  153. Han X, Fiehler R, Broze GJ Jr (1998) Isolation of a protein Z-de-pendent plasma protease inhibitor. Proc Natl Acad Sci USA 95: 9250–9255

    CAS  PubMed  Google Scholar 

  154. Kemkes-Matthes B, Walmrath K, Matthes KJ (1995) Onkologie 18:195

    Google Scholar 

  155. Yin ZF, Huang ZF, Cui J, Fiehler R, Lasky N, Ginsburg D, Broze GJ Jr (2000) Prothrombotic phenotype of protein Z deficiency. Proc Natl Acad Sci U S A 97:6734–6738

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Kemkes-Matthes B, Matthes KJ (1995) Protein Z deficiency: a new cause of bleeding tendency. Thromb Res 79:49–55

    CAS  PubMed  Google Scholar 

  157. Kemkes-Matthes B, Mathes KJ, Sutor AH (1995) Protein Z bei Kindern mit Blutungsereignissen unklarer Genese. Erste klinische Daten. In: Scharrer I, Schramm W (eds) Hamophilie-Symposion Hamburg. Springer, Berlin Heidelberg New York, p 325

    Google Scholar 

  158. Kemkes-Matthes B, Matthes KJ (1995) Protein Z, a new haemostatic factor in liver diseases. Haemostasis 25:312–316

    CAS  PubMed  Google Scholar 

  159. Greten J, Kreis I, Liliensiek B, Allenberg J, Amiral J, Ziegler R, Nawroth PP (1998) Localisation of protein Z in vascular lesions of patients with atherosclerosis. Vasa 27:144–148

    CAS  PubMed  Google Scholar 

  160. Andrews BS, Rehemtulla A, Fowler BJ, Edgington TS, Mackman N (1991) Conservation of tissue factor primary sequence among three mammalian species. Gene 98:265–269

    CAS  PubMed  Google Scholar 

  161. Mackman N, Fowler BJ, Edgington TS, Morrissey JH (1990) Functional analysis of the human tissue factor promoter and induction by serum. Proc Natl Acad Sci U S A 87:2254–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Mackman N (1995) Regulation of the tissue factor gene. FASEB J 9:883–889

    CAS  PubMed  Google Scholar 

  163. Mackman N, Brand K, Edgington TS (1991) Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J Exp Med 174:1517–1526

    CAS  PubMed  Google Scholar 

  164. Bach R, Konigsberg WH, Nemerson Y (1988) Human tissue factor contains thioester-linked palmitate and stearate on the cytoplasmic half-cystine. Biochemistry 27:4227–4231

    CAS  PubMed  Google Scholar 

  165. Banner DW, D’Arcy A, Chene C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D (1996) The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380:41–46

    CAS  PubMed  Google Scholar 

  166. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ Jr (1996) Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88:1583–1587

    CAS  PubMed  Google Scholar 

  167. Huang ZF, Higuchi D, Lasky N, Broze GJ Jr (1997) Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 90:944–951

    CAS  PubMed  Google Scholar 

  168. Rosen ED, Chan JC, Idusogie E, Clotman F, Vlasuk G, Luther T, Jalbert LR, Albrecht S, Zhong L, Lissens A, Schoonjans L, Moons L, Collen D, Castellino FJ, Carmeliet P (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390: 290–294

    CAS  PubMed  Google Scholar 

  169. Stern DM, Nawroth PP, Kisiel W, Vehar G, Esmon CT (1985) The binding of factor IXa to cultured bovine aortic endothelial cells. Induction of a specific site in the presence of factors VIII and X. J Biol Chem 260:6717–6722

    CAS  PubMed  Google Scholar 

  170. Jackman RW, Beeler DL, VanDeWater L, Rosenberg RD (1986) Characterization of a thrombomodulin cDNA reveals structural similarity to the low-density lipoprotein receptor. Proc Natl Acad Sci USA 83:8834–8838

    CAS  PubMed  Google Scholar 

  171. Jackman RW, Beeler DL, Fritze L, Soff G, Rosenberg RD (1987) Human thrombomodulin gene is intron depleted: nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc Natl Acad Sci USA 84: 6425–6429

    CAS  PubMed  Google Scholar 

  172. Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE (1987) Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry 26:4350–4357

    CAS  PubMed  Google Scholar 

  173. Duda RJ Jr, O’Brien JF, Katzmann JA, Peterson JM, Mann KG, Riggs BL (1988) Concurrent assays of circulating bone G1a-protein and bone alkaline phosphatase: effects of sex, age, and metabolic bone disease. J Clin Endocrinol Metab 66:951–957

    CAS  PubMed  Google Scholar 

  174. Tsiang M, Lentz SR, Sadler JE (1992) Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem 267:6164–6170

    CAS  PubMed  Google Scholar 

  175. Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S (1987) Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J 6:1891–1897

    CAS  PubMed  Google Scholar 

  176. Kurosawa S, Galvin JB, Esmon NL, Esmon CT (1987) Proteolytic formation and properties of functional domains of thrombomodulin. J Biol Chem 262:2206–2212

    CAS  PubMed  Google Scholar 

  177. Nagashima M, Lundh E, Leonard JC, Morser J, Parkinson JF (1993) Alanine-scanning mutagenesis of the epidermal growth factor-like domains of human thrombomodulin identifies critical residues for its cofactor activity. J Biol Chem 268:2888–2892

    CAS  PubMed  Google Scholar 

  178. Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L (1997) Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost 78:386–391

    CAS  PubMed  Google Scholar 

  179. Overduin M, de Beer T (2000) The plot thickens: how thrombin modulates blood clotting. Nat Struct Biol 7:267–269

    CAS  PubMed  Google Scholar 

  180. Kane WH, Davie EW (1986) Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII and ceruloplasmin. Proc Natl Acad Sci U S A 83:6800–6804

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Jenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG (1987) Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 84:4846–4850

    CAS  PubMed  Google Scholar 

  182. Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC (1984) Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312:342–347

    CAS  PubMed  Google Scholar 

  183. Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN (1984) Structure of human factor VIII. Nature 312:337–342

    CAS  PubMed  Google Scholar 

  184. Ortel TL, Takahashi N, Putnam FW (1984) Structural model of human ceruloplasmin based on internal triplication, hydrophilic/ hydrophobic character, and secondary structure of domains. Proc Natl Acad Sci U S A 81:4761–4765

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Mann KG, Lawler CM, Vehar GA, Church WR (1984) Coagulation factor V contains copper ion. J Biol Chem 259:12949–12951

    CAS  PubMed  Google Scholar 

  186. Bihoreau N, Pin S, de Kersabiec AM, Vidot F, Fontaine-Aupart MP (1993) Metal identification in human anti-hemophilia A factor (factor VIII). C R Acad Sci III 316:536–539

    CAS  PubMed  Google Scholar 

  187. Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U, Parry G (1990) cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factorlike domains linked to factor VIII-like sequences. Proc Natl Acad Sci USA 87:8417–8421

    CAS  PubMed  Google Scholar 

  188. Guinto ER, Esmon CT, Mann KG, MacGillivray RT (1992) The complete cDNA sequence of bovine coagulation factor V. J Biol Chem 267:2971–2978

    CAS  PubMed  Google Scholar 

  189. Tracy PB, Eide LL, Bowie EJ, Mann KG (1982) Radioimmunoassay of factor V in human plasma and platelets. Blood 60:59–63

    CAS  PubMed  Google Scholar 

  190. Wilson DB, Salem HH, Mruk JS, Maruyama I, Majerus PW (1984) Biosynthesis of coagulation Factor V by a human hepatocellular carcinoma cell line. J Clin Invest 73:654–658

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Cerveny TJ, Fass DN, Mann KG (1984) Synthesis of coagulation factor V by cultured aortic endothelium. Blood 63:1467–1474

    CAS  PubMed  Google Scholar 

  192. Kane WH, Majerus PW (1981) Purification and characterization of human coagulation factor V. J Biol Chem 256:1002–1007

    CAS  PubMed  Google Scholar 

  193. Dahlback B (1980) Human coagulation factor V purification and thrombin-catalyzed activation. J Clin Invest 66:583–591

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Kumar HPM, Besman MJ, Lundblad RL, Jenny NS, Mann KG (1999) Carbohydrate analysis of plasma factor V and factor VIII. Thromb Haemost Suppl (abstract) p 35

    Google Scholar 

  195. Hortin GL (1990) Sulfation of tyrosine residues in coagulation factor V. Blood 76:946–952

    CAS  PubMed  Google Scholar 

  196. Pittman DD, Tomkinson KN, Michnick D, Selighsohn U, Kaufman RJ (1994) Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 33:6952–6959

    CAS  PubMed  Google Scholar 

  197. Xue J, Kalafatis M, Mann KG (1993) Determination of the disulfide bridges in factor Va light chain. Biochemistry 32:5917–5923

    CAS  PubMed  Google Scholar 

  198. Xue J, Kalafatis M, Silveira JR, Kung C, Mann KG (1994) Determination of the disulfide bridges in factor Va heavy chain. Biochemistry 33:13109–13116

    CAS  PubMed  Google Scholar 

  199. Pittman DD, Tomkinson KN, Kaufman RJ (1994) Post-translational requirements for functional factor V and factor VIII secretion in mammalian cells. J Biol Chem 269:17329–17337

    CAS  PubMed  Google Scholar 

  200. Thorelli E, Kaufman RJ, Dahlback B (1998) The C-terminal region of the factor V B-domain is crucial for the anticoagulant activity of factor V. J Biol Chem 273:16140–16145

    CAS  PubMed  Google Scholar 

  201. Nesheim ME, Foster WB, Hewick R, Mann KG (1984) Characterization of factor V activation intermediates. J Biol Chem 259:3187–3196

    CAS  PubMed  Google Scholar 

  202. Suzuki K, Dahlback B, Stenflo J (1982) Thrombin-catalyzed activation of human coagulation factor V. J Biol Chem 257:6556–6564

    CAS  PubMed  Google Scholar 

  203. Nesheim ME, Taswell JB, Mann KG (1979) The contribution of bovine factor V and factor Va to the activity of prothrombinase. J Biol Chem 254:10952–10962

    CAS  PubMed  Google Scholar 

  204. Mann KG, Jenny RJ, Krishnaswamy S (1988) Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem 57:915–956

    CAS  PubMed  Google Scholar 

  205. Kalafatis M, Rand MD, Jenny RJ, Ehrlich YH, Mann KG (1993) Phosphorylation of factor Va and factor Villa by activated platelets. Blood 81:704–719

    CAS  PubMed  Google Scholar 

  206. Rand MD, Kalafatis M, Mann KG (1994) Platelet coagulation factor Va: the major secretory platelet phosphoprotein. Blood 83:2180–2190

    CAS  PubMed  Google Scholar 

  207. Kalafatis M, Rand MD, Mann KG (1994) The mechanism of inactiva-tion of human factor V and human factor Va by activated protein C. J Biol Chem 269:31869–31880

    CAS  PubMed  Google Scholar 

  208. Kalafatis M, Mann KG (1993) Role of the membrane in the inactiva-tion of factor Va by activated protein C. J Biol Chem 268:27246–27257

    CAS  PubMed  Google Scholar 

  209. Mann KG, Hockin MF, Begin KJ, Kalafatis M (1997) Activated protein C cleavage of factor Va leads to dissociation of the A2 domain. J Biol Chem 272:20678–20683

    CAS  PubMed  Google Scholar 

  210. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67

    CAS  PubMed  Google Scholar 

  211. Egan JO, Kalafatis M, Mann KG (1997) The effect of Arg306 → Ala and Arg506 → Gln substitutions in the inactivation of recombinant human factor Va by activated protein C and protein S. Protein Sci 6:2016–2027

    CAS  PubMed  Google Scholar 

  212. Kalafatis M, Bertina RM, Rand MD, Mann KG (1995) Characterization of the molecular defect in factor VR506Q. J Biol Chem 270: 4053–4057

    CAS  PubMed  Google Scholar 

  213. Kalafatis M, Lu D, Bertina RM, Long GL, Mann KG (1995) Biochemical prototype for familial thrombosis. A study combining a functional protein C mutation and factor V Leiden. Arterioscler Thromb Vasc Biol 15:2181–2187

    CAS  PubMed  Google Scholar 

  214. Zoller B, Hillarp A, Berntorp E, Dahlback B (1997) Activated protein C resistance due to a common factor V gene mutation is a major risk factor for venous thrombosis. Annu Rev Med 48:45–58

    CAS  PubMed  Google Scholar 

  215. Reitsma PH (1996) Protein C deficiency: summary of the 1995 database update. Nucleic Acids Res 24:157–159

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Murray JM, Rand MD, Egan JO, Murphy S, Kim HC, Mann KG (1995) Factor V New Brunswick: Ala221-to-Val substitution results in reduced cofactor activity. Blood 86:1820–1827

    CAS  PubMed  Google Scholar 

  217. Vehar GA, Davie EW (1980) Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry 19:401–410

    CAS  PubMed  Google Scholar 

  218. Lollar P, Parker CG (1987) Stoichiometry of the porcine factor VIII-von Willebrand factor association. J Biol Chem 262:17572–17576

    CAS  PubMed  Google Scholar 

  219. Lollar P, Parker CG (1989) Subunit structure of thrombin-activated porcine factor VIII. Biochemistry 28:666–674

    CAS  PubMed  Google Scholar 

  220. Kane WH, Davie EW (1988) Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood 71:539–555

    CAS  PubMed  Google Scholar 

  221. Michnick DA, Pittman DD, Wise RJ, Kaufman RJ (1994) Identification of individual tyrosine sulfation sites within factor VIII required for optimal activity and efficient thrombin cleavage. J Biol Chem 269:20095–20102

    CAS  PubMed  Google Scholar 

  222. McMullen BA, Fujikawa K, Davie EW, Hedner U, Ezban M (1995) Locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII (antihemophilic factor A). Protein Sci 4:740–746

    CAS  PubMed  Google Scholar 

  223. Leyte A, van Schijndel HB, Niehrs C, Huttner WB, Verbeet MP, Mertens K, van Mourik JA (1991) Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J Biol Chem 266:740–746

    CAS  PubMed  Google Scholar 

  224. Fay PJ, Haidaris PJ, Smudzin TM (1991) Human factor Villa sub-unit structure. Reconstruction of factor Villa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem 266:8957–8962

    CAS  PubMed  Google Scholar 

  225. Lollar P, Parker CG (1990) pH-dependent denaturation of thrombin-activated porcine factor VIII. J Biol Chem 265:1688–1692

    CAS  PubMed  Google Scholar 

  226. Fay PJ, Smudzin TM (1992) Characterization of the interaction between the A2 subunit and A1/A3-C1-C2 dimer in human factor Villa. J Biol Chem 267:13246–13250

    CAS  PubMed  Google Scholar 

  227. Lu D, Kalafatis M, Mann KG, Long GL (1996) Comparison of activated protein C/protein S-mediated inactivation of human factor VIII and factor V. Blood 87:4708–4717

    CAS  PubMed  Google Scholar 

  228. Fay PJ, Smudzin TM, Walker FJ (1991) Activated protein C-cat-alyzed inactivation of human factor VIII and factor Villa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem 266:20139–20145

    CAS  PubMed  Google Scholar 

  229. Hoyer LW (1987) Molecular pathology and immunology of factor VIII (hemophilia A and factor VIII inhibitors). Hum Pathol 18:153–161

    CAS  PubMed  Google Scholar 

  230. Gitschier J (1991) The molecular basis of hemophilia A. Ann NY Acad Sci 614:89–96

    CAS  PubMed  Google Scholar 

  231. Bouma BN, Griffin JH (1977) Human blood coagulation factor XL Purification, properties, and mechanism of activation by activated factor XII. J Biol Chem 252:6432–6437

    CAS  PubMed  Google Scholar 

  232. Hermodson M, Schmer G, Kurachi K (1977) Isolation, crystallization, and primary amino acid sequence of human platelet factor IV. J Biol Chem 252:6276–6279

    CAS  PubMed  Google Scholar 

  233. Thompson RE, Mandle R Jr, Kaplan AP (1977) Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest 60:1376–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Walsh PN, Baglia FA, Jameson BA (1993) Factor XI: structurefunction relationships utilizing monoclonal antibodies protein modification, computational chemistry, and rational synthetic peptide design. Methods Enzymol 222:65–96

    CAS  PubMed  Google Scholar 

  235. McMullen BA, Fujikawa K, Davie EW (1991) Location of the disulfide bonds in human coagulation factor XI: the presence of tandem apple domains. Biochemistry 30:2056–2060

    CAS  PubMed  Google Scholar 

  236. Walsh PN, Griffin JH (1981) Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 57:106–118

    CAS  PubMed  Google Scholar 

  237. Walsh PN (1972) The effects of collagen and kaolin on the intrinsic coagulant activity of platelets. Evidence for an alternative pathway in intrinsic coagulation not requiring factor XII. Br J Haematol 22:393–405

    CAS  PubMed  Google Scholar 

  238. Schiffman S, Yeh CH (1990) Purification and characterization of platelet factor XL. Thromb Res 60:87–97

    CAS  PubMed  Google Scholar 

  239. Walsh PN, Biggs R (1972) The role of platelets in intrinsic factor-Xa formation. Br J Haematol 22:743–760

    CAS  PubMed  Google Scholar 

  240. Walsh PN (1972) The role of platelets in the contact phase of blood coagulation. Br J Haematol 22:237–254

    CAS  PubMed  Google Scholar 

  241. Bouma BN, Griffin JH (1977) Human blood coagulation factor XL Purification, properties, and mechanism of activation by activated factor XII. J Biol Chem 252:6432–6437

    CAS  PubMed  Google Scholar 

  242. Rosenthal RH, Dreskin OH, Rosenthal N (1955) Plasma thromboplastin antecedent (PTA) deficiency: clinical, coagulation, therapeutic and hereditary aspects of a new hemophilia-like disease. Blood 10:120

    CAS  PubMed  Google Scholar 

  243. Forbes CD, Ratnoff OD (1972) Studies on plasma thromboplastin antecedent (factor XI), PTA deficiency and inhibition of PTA by plasma: pharmacologic inhibitors and specific antiserum. J Lab Clin Med 79:113–127

    CAS  PubMed  Google Scholar 

  244. Seligsohn U (1993) Factor XI deficiency. Thromb Haemost 70:68–71

    CAS  PubMed  Google Scholar 

  245. Rapaport SI, Proctor RR, Patch MJ (1961) The mode of inheritance of PTA deficiency: evidence for the existence of major PTA deficiency and minor PTA deficiency. Blood 18:149–155

    CAS  PubMed  Google Scholar 

  246. Leiba H, Ramot B, Many A (1965) Heredity and coagulation studies in ten families with Factor XI (plasma thromboplastin antecedent) deficiency. Br J Haematol 11:654–665

    CAS  PubMed  Google Scholar 

  247. Seligsohn U (1978) High gene frequency of factor XI (PTA) deficiency in Ashkenazi Jews. Blood 51:1223–1228

    CAS  PubMed  Google Scholar 

  248. Shpilberg 0, Peretz H, Zivelin A, Yatuv R, Chetrit A, Kulka T, Stern C, Weiss E, Seligsohn U (1995) One of the two common mutations causing factor XI deficiency in Ashkenazi Jews (type II) is also prevalent in Iraqi Jews, who represent the ancient gene pool of Jews. Blood 85:429–432

    PubMed  Google Scholar 

  249. Bolton-Maggs PH, Young Wan-Yin B, McCraw AH, Slack J, Kernoff PB (1988) Inheritance and bleeding in factor XI deficiency. Br J Haematol 69:521–528

    CAS  PubMed  Google Scholar 

  250. Asakai R, Chung DW, Ratnoff OD, Davie EW (1989) Factor XI (plasma thromboplastin antecedent) deficiency in Ashkenazi Jews is a bleeding disorder that can result from three types of point mutations. Proc Natl Acad Sci U S A 86:7667–7671

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Meijers JC, Davie EW, Chung DW (1992) Expression of human blood coagulation factor XI: characterization of the defect in factor XI type III deficiency. Blood 79:1435–1440

    CAS  PubMed  Google Scholar 

  252. Schmaier AH (1994) Contact activation. In: Loscalzo J, Schafer AI (eds) Thrombosis and hemorrhage. Williams and Wilkins, Baltimore, pp 105–127

    Google Scholar 

  253. Griffin JH, Cochrane CG (1976) Human factor XII (Hageman factor). Methods Enzymol 45:56–65

    CAS  PubMed  Google Scholar 

  254. Saito H, Ratnoff OD, Pensky J (1976) Radioimmunoassay of human Hageman factor (factor XII). J Lab Clin Med 88:506–514

    CAS  PubMed  Google Scholar 

  255. McMullen BA, Fujikawa K (1985) Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor). J Biol Chem 260:5328–5341

    CAS  PubMed  Google Scholar 

  256. Gordon EM, Douglas JG, Ratnoff OD, Arafah BM (1985) The influence of estrogen and prolactin on Hageman factor (factor XII) titer in ovariectomized and hypophysectomized rats. Blood 66:602–605

    CAS  PubMed  Google Scholar 

  257. Gordon EM, Williams SR, Frenchek B, Mazur CA, Speroff L (1988) Dose-dependent effects of postmenopausal estrogen and progestin on antithrombin III and factor XII. J Lab Clin Med 111:52–56

    CAS  PubMed  Google Scholar 

  258. Gordon EM, Johnson TR, Ramos LP, Schmeidler-Sapiro KT (1991) Enhanced expression of factor XII (Hageman factor) in isolated livers of estrogen- and prolactin-treated rats. J Lab Clin Med 117: 353–358

    CAS  PubMed  Google Scholar 

  259. Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S (1985) Structural organization of the human kinino-gen gene and a model for its evolution. J Biol Chem 260:8610–8617

    CAS  PubMed  Google Scholar 

  260. Kellermann J, Lottspeich F, Henschen A, Muller-Esterl W (1986) Completion of the primary structure of human high-molecular-mass kininogen. The amino acid sequence of the entire heavy chain and evidence for its evolution by gene triplication. Eur J Biochem 154:471–478

    CAS  PubMed  Google Scholar 

  261. Proud D, Pierce JV, Pisano JJ (1980) Radioimmunoassay of human high-molecular-weight kininogen in normal and deficient plasmas. J Lab Clin Med 95:563–574

    CAS  PubMed  Google Scholar 

  262. Wuepper KD, Miller DR, Lacombe MJ (1975) Flaujeac trait. Deficiency of human plasma kininogen. J Clin Invest 56:1663–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Cheung PP, Kunapuli SP, Scott CF, Wachtfogel YT, Colman RW (1993) Genetic basis of total kininogen deficiency in Williams’trait. J Biol Chem 268:23361–23365

    CAS  PubMed  Google Scholar 

  264. Fisher CA, Schmaier AH, Addonizio VP, Colman RW (1982) Assay of prekallikrein in human plasma: comparison of amidolytic, estero-lytic, coagulation, and immunochemical assays. Blood 59:963–970

    CAS  PubMed  Google Scholar 

  265. Mandle RJ, Colman RW, Kaplan AP (1976) Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci U S A 73:4179–4183

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Castaman G, Ruggeri M, Rodeghiero F (1990) A new Italian family with severe prekallikrein deficiency. Desmopressin-induced fibrinolysis and coagulation changes in homozygous and heterozygous members. Ric Clin Lab 20:239–244

    CAS  PubMed  Google Scholar 

  267. McDonagh J, McDonagh RP Jr, Delage JM, Wagner RH (1969) Factor XIII in human plasma and platelets. J Clin Invest 48:940–946

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Henriksson P, Becker S, Lynch G, McDonagh J (1985) Identification of intracellular factor XIII in human monocytes and macrophages. J Clin Invest 76:528–534

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Muszbek L, Adany R, Szegedi G, Polgar J, Kavai M (1985) Factor XIII of blood coagulation in human monocytes. Thromb Res 37:401–410

    CAS  PubMed  Google Scholar 

  270. Takagi T, Doolittle RF (1974) Amino acid sequence studies on factor XIII and the peptide released during its activation by thrombin. Biochemistry 13:750–756

    CAS  PubMed  Google Scholar 

  271. Lorand L, Jeong JM, Radek JT, Wilson J (1993) Human plasma factor XIII: subunit interactions and activation of zymogen. Methods Enzymol 222:22–35

    CAS  PubMed  Google Scholar 

  272. McDonagh J (1994) Structure and function of factor XIII. In: Colman RW, Hirsh J, Marder VJ, Sandberg H (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott, Philadelphia, pp 301–313

    Google Scholar 

  273. Ichinose A, Kaetsu H (1993) Molecular approach to structure-function relationship of human coagulation factor XIII. Methods Enzymol 222:36–51

    CAS  PubMed  Google Scholar 

  274. Mikuni Y, Iwanaga S, Konishi K (1973) A peptide released from plasma fibrin stabilizing factor in the conversion to the active enzyme by thrombin. Biochem Biophys Res Commun 54:1393–1403

    CAS  PubMed  Google Scholar 

  275. Procyk R, Blomback B (1988) Factor XIII-induced cross-linking in solutions of fibrinogen and fibronectin. Biochim Biophys Acta 967:304–313

    CAS  PubMed  Google Scholar 

  276. Procyk R, Adamson L, Block M, Blomback B (1985) Factor XIII catalyzed formation of fibrinogen-fibronectin oligomers — a thiol-enhanced process. Thromb Res 40:833–852

    CAS  PubMed  Google Scholar 

  277. Tamaki T, Aoki N (1982) Cross-linking of alpha 2-plasmin inhibitor to fibrin catalyzed by activated fibrin-stabilizing factor. J Biol Chem 257:14767–14772

    CAS  PubMed  Google Scholar 

  278. Chen R, Doolittle RF (1971) Cross-linking sites in human and bovine fibrin. Biochemistry 10:4487–4491

    CAS  PubMed  Google Scholar 

  279. Kanaide H, Shainoff JR (1975) Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIa). J Lab Clin Med 85:574–597

    CAS  PubMed  Google Scholar 

  280. Mosher DF (1984) Cross-linking of fibronectin to collagenous proteins. Mol Cell Biochem 58:63–68

    CAS  PubMed  Google Scholar 

  281. Mosher DF, Schad PE (1979) Cross-linking of fibronectin to collagen by blood coagulation Factor XIIIa. J Clin Invest 64:781–787

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Mui PT, Ganguly P (1977) Cross-linking of actin and fibrin by fibrin-stabilizing factor. Am J Physiol 233:H346–H349

    Google Scholar 

  283. Lynch GW, Slayter HS, Miller BE, McDonagh J (1987) Characterization of thrombospondin as a substrate for factor XIII transglutaminase. J Biol Chem 262:1772–1778

    CAS  PubMed  Google Scholar 

  284. Mikkola H, Syrjala M, Rasi V, Vahtera E, Hamalainen E, Peltonen L, Palotie A (1994) Deficiency in the A-subunit of coagulation factor XIII: two novel point mutations demonstrate different effects on transcript levels. Blood 84:517–525

    CAS  PubMed  Google Scholar 

  285. Kohler HP, Stickland MH, Ossei-Gerning N, Carter A, Mikkola H, Grant PJ (1998) Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 79:8–13

    CAS  PubMed  Google Scholar 

  286. Wartiovaara U, Perola M, Mikkola H, Totterman K, Savolainen V, Penttila A, Grant PJ, Tikkanen MJ, Vartiainen E, Karhunen PJ, Peltonen L, Palotie A (1999) Association of FXIII Val34Leu with decreased risk of myocardial infarction in Finnish males. Atherosclerosis 142:295–300

    CAS  PubMed  Google Scholar 

  287. Catto AJ, Kohler HP, Coore J, Mansfield MW, Stickland MH, Grant PJ (1999) Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood 93:906–908

    CAS  PubMed  Google Scholar 

  288. Franco RF, Reitsma PH, Lourenco D, Maffei FH, Morelli V, Tavella MH, Araujo AG, Piccinato CE, Zago MA (1999) Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 81:676–679

    CAS  PubMed  Google Scholar 

  289. Elbaz A, Poirier 0, Canaple S, Chedru F, Cambien F, Amarenco P (2000) The association between the Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 95:586–591

    CAS  PubMed  Google Scholar 

  290. Renner W, Koppel H, Hoffmann C, Schallmoser K, Stanger O, Toplak H, Wascher TC, Pilger E (2000) Prothrombin G20210A, factor V Leiden, and factor XIII Val34Leu. Common mutations of blood coagulation factors and deep vein thrombosis in Austria. Thromb Res 99:35–39

    CAS  PubMed  Google Scholar 

  291. Kohler HP, Ariens RA, Whitaker P, Grant PJ (1998) A common coding polymorphism in the FXIII A-subunit gene (FXIIIVal34Leu) affects cross-linking activity (letter). Thromb Haemost 80:704

    CAS  PubMed  Google Scholar 

  292. Kangsadalampai S, Board PG (1998) The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity. Blood 92:2766–2770

    CAS  PubMed  Google Scholar 

  293. Anwar R, Gallivan L, Edmonds SD, Markham AF (1999) Geno-type/phenotype correlations for coagulation factor XIII: specific normal polymorphisms are associated with high or low factor XIII-specific activity. Blood 93:897–905

    CAS  PubMed  Google Scholar 

  294. Ariens RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ (2000) The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 96:988–995

    CAS  PubMed  Google Scholar 

  295. Shafer JA (1988) CRC critical reviews. Clin Lab Sci 26:1–4

    CAS  Google Scholar 

  296. Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53:195–229

    CAS  PubMed  Google Scholar 

  297. Blomback B, Blomback M, Edman P, Hessel B (1966) Human fibrinopeptides. Isolation, characterization and structure. Biochim Biophys Acta 115:371–396

    CAS  PubMed  Google Scholar 

  298. Mosesson MW (1992) The roles of fibrinogen and fibrin in hemostasis and thrombosis. Semin Hematol 29:177–188

    CAS  PubMed  Google Scholar 

  299. Blomback B, Hessel B, Hogg D (1976) Disulfide bridges in NH2-terminal part of human fibrinogen. Thromb Res 8:639–658

    CAS  PubMed  Google Scholar 

  300. Blomback B, Blomback M, Hessel B, Iwanaga S (1967) Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature 215:1445–1448

    CAS  PubMed  Google Scholar 

  301. Henschen A, Lottspeich F, Kehl M, Southan C (1983) Covalent structure of fibrinogen. Ann N Y Acad Sci 408:28–43

    CAS  PubMed  Google Scholar 

  302. Doolittle RF, Goldbaum DM, Doolittle LR (1978) Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol 120:311–325

    CAS  PubMed  Google Scholar 

  303. Henschen A (1964) Number and reactivity of disulfide bonds in fibrinogen and fibrin. Arkiv Kemi 22:355–359

    CAS  Google Scholar 

  304. Bouma H, Takagi T, Doolittle RF (1978) The arrangement of disulfide bonds in fragment D from human fibrinogen. Thromb Res 13: 557–562

    CAS  PubMed  Google Scholar 

  305. Hardy JJ, Carrell NA, McDonagh J (1983) Calcium ion functions in fibrinogen conversion to fibrin. Ann N Y Acad Sci 408:279–287

    CAS  PubMed  Google Scholar 

  306. Dang CV, Ebert RF, Bell WR (1985) Localization of a fibrinogen calcium binding site between gamma-subunit positions 311 and 336 by terbium fluorescence. J Biol Chem 260:9713–9719

    CAS  PubMed  Google Scholar 

  307. Nieuwenhuizen W, Haverkate F (1983) Calcium-binding regions in fibrinogen. Ann N Y Acad Sci 408:92–96

    CAS  PubMed  Google Scholar 

  308. Spraggon G, Everse SJ, Doolittle RF (1997) Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 389:455–462

    CAS  PubMed  Google Scholar 

  309. Everse SJ, Spraggon G, Veerapandian L, Doolittle RF (1999) Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Proamide. Biochemistry 38:2941–2946

    CAS  PubMed  Google Scholar 

  310. Doolittle RF, Spraggon G, Everse SJ (1999) Crystal structures of fragments D and double-D from fibrinogen and fibrin. Thromb Haemost 82:271–276

    CAS  PubMed  Google Scholar 

  311. Ridgway HJ, Brennan SO, Loreth RM, George PM (1997) Fibrinogen Kaiserslautern (gamma 380 Lys to Asn): a new glycosylated fibrinogen variant with delayed polymerization. Br J Haematol 99:562–569

    CAS  PubMed  Google Scholar 

  312. Koopman J, Haverkate F, Grimbergen J, Egbring R, Lord ST (1992) Fibrinogen Marburg: a homozygous case of dysfibrinogenemia, lacking amino acids A alpha 461–610 (Lys 461 AAA → stop TAA). Blood 80:1972–1979

    CAS  PubMed  Google Scholar 

  313. Furlan M, Steinmann C, Jungo M, Bogli C, Baudo F, Redaelli R, Fedeli F, Lammle B (1994) A frameshift mutation in Exon V of the A alpha-chain gene leading to truncated A alpha-chains in the homozygous dysfibrinogen Milano III. J Biol Chem 269:33129–33134

    CAS  PubMed  Google Scholar 

  314. Mammen EF (1983) Seminars in thrombosis and hemostasis. Semin Thromb Hemost 9:1–72

    CAS  PubMed  Google Scholar 

  315. Neerman-Arbez M, de Moerloose P, Bridel C, Honsberger A, Schonborner A, Rossier C, Peerlinck K, Claeyssens S, Di Michèle D, d’Oiron R, Dreyfus M, Laubriat-Bianchin M, Dieval J, Antonarakis SE, Morris MA (2000) Mutations in the fibrinogen A alpha gene account for the majority of cases of congenital afibrinogenemia. Blood 96:149–152

    CAS  PubMed  Google Scholar 

  316. Fellowes AP, Brennan SO, Holme R, Stormorken H, Brosstad FR, George PM (2000) Homozygous truncation of the fibrinogen A alpha chain within the coiled coil causes congenital afibrinogenemia. Blood 96:773–775

    CAS  PubMed  Google Scholar 

  317. Everse SJ, Spraggon G, Doolittle RF (1998) A three-dimensional consideration of variant human fibrinogens. Thromb Haemost 80:1–9

    CAS  PubMed  Google Scholar 

  318. Cote HC, Lord ST, Pratt KP (1998) Gamma-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the gamma chain of human fibrinogen. Blood 92:2195–2212

    CAS  PubMed  Google Scholar 

  319. Fellowes AP, Brennan SO, Ridgway HJ, Heaton DC, George PM (1998) Electrospray ionization mass spectrometry identification of fibrinogen Banks Peninsula (gamma280Ty → Cys): a new variant with defective polymerization. Br J Haematol 101:24–31

    CAS  PubMed  Google Scholar 

  320. Lounes KC, Soria C, Valognes A, Turchini MF, Soria J, Koopman J (1999) Fibrinogen Bastia (gamma 318 Asp → Tyr): a novel abnormal fibrinogen characterized by defective fibrin polymerization. Thromb Haemost 82:1639–1643

    CAS  PubMed  Google Scholar 

  321. Dempfle CE, Henschen A (1990) Fibrinogen Mannheim I-identification of an A alpha19 Arg to Gly substitution in dysfibrinogenemia associated with bleeding tendency. In: Matsuda M, Iwanaga S, Takada A, Henschen A (eds) Fibrinogen, current basic and clinical aspects. Elsevier Science, Amsterdam, pp 159–166

    Google Scholar 

  322. Kudryk B, Blomback B, Blomback M (1976) Fibrinogen Detroit — an abnormal fibrinogen with non-functional NH2-terminal polymerization domain. Thromb Res 9:25–36

    CAS  PubMed  Google Scholar 

  323. Budzynski AZ, Marder VJ, Menache D, Guillin MC (1974) Defect in the gamma polypeptide chain of a congenital abnormal fibrinogen (Paris I). Nature 252:66–68

    CAS  PubMed  Google Scholar 

  324. Finlayson JS, Reamer LA, Mosesson MW, Menache D (1980) Fibrinopeptide release from fibrinogen Paris I. Thromb Res 17:577–579

    CAS  PubMed  Google Scholar 

  325. Mosesson MW, Amrani DL, Menache D (1976) Studies on the structural abnormality of fibrinogen Paris I. J Clin Invest 57:782–790

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Rosenberg JB, Newman PJ, Mosesson MW, Guillin MC, Amrani DL (1993) Paris I dysfibrinogenemia: a point mutation in intron 8 results in insertion of a 15-amino acid sequence in the fibrinogen gamma-chain. Thromb Haemost 69:217–220

    CAS  PubMed  Google Scholar 

  327. Mosesson MW, Finlayson JS, Umfleet RA (1972) Human fibrinogen heterogeneities. 3. Identification of chain variants. J Biol Chem 247: 5223–5227

    CAS  PubMed  Google Scholar 

  328. Lawrence SO, Wright TW, Francis CW, Fay PJ, Haidaris PJ (1993) Purification and functional characterization of homodimeric gamma B-gamma B fibrinogen from rat plasma. Blood 82:2406–2413

    CAS  PubMed  Google Scholar 

  329. Peerschke EI, Francis CW, Marder VJ (1986) Fibrinogen binding to human blood platelets: effect of gamma chain carboxyterminal structure and length. Blood 67:385–390

    CAS  PubMed  Google Scholar 

  330. Wolfenstein-Todel C, Mosesson MW (1980) Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (gamma’). Proc Natl Acad Sci USA 77:5069–5073

    CAS  PubMed  Google Scholar 

  331. Francis CW, Marder VJ, Martin SE (1980) Demonstration of a large molecular weight variant of the gamma chain of normal human plasma fibrinogen. J Biol Chem 255:5599–5604

    CAS  PubMed  Google Scholar 

  332. Siebenlist KR, Meh DA, Mosesson MW (1996) Plasma factor XIII binds specifically to fibrinogen molecules containing gamma chains. Biochemistry 35:10448–10453

    CAS  PubMed  Google Scholar 

  333. Falls LA, Farrell DH (1997) Resistance of gamma A/gamma’ fibrin clots to fibrinolysis. J Biol Chem 272:14251–14256

    CAS  PubMed  Google Scholar 

  334. Moaddel M, Farrell DH, Daugherty MA, Fried MG (2000) Interactions of human fibrinogens with factor XIII: roles of calcium and the gamma’ peptide. Biochemistry 39:6698–6705

    CAS  PubMed  Google Scholar 

  335. Reeve EG, Franks JJ (1974) Fibrinogen synthesis, distribution and degradation. Semin Thromb Hemost 1:129

    CAS  Google Scholar 

  336. Fuller GM, Otto JM, Woloski BM, McGary CT, Adams MA (1985) The effects of hepatocyte stimulating factor on fibrinogen biosynthesis in hepatocyte monolayers. J Cell Biol 101:1481–1486

    CAS  PubMed  Google Scholar 

  337. Huber P, Laurent M, Dalmon J (1990) Human beta-fibrinogen gene expression. Upstream sequences involved in its tissue-specific expression and its dexamethasone and interleukin-6 stimulation. J Biol Chem 265:5695–5701

    CAS  PubMed  Google Scholar 

  338. Cook NS, Ubben D (1990) Fibrinogen as a major risk factor in cardiovascular disease. Trends Pharmacol Sci 11:444–451

    PubMed  Google Scholar 

  339. Ernst E, Resch KL (1995) Therapeutic interventions to lower plasma fibrinogen concentration. Eur Heart J 16 [Suppl A]:47–52

    PubMed  Google Scholar 

  340. Suh TT, Holmback K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter S, Degen JL (1995) Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 9:2020–2033

    CAS  PubMed  Google Scholar 

  341. Broze GJ Jr (1995) Tissue factor pathway inhibitor and the revised theory of coagulation. Annu Rev Med 46:103–112

    CAS  PubMed  Google Scholar 

  342. Broze GJ Jr, Lange GW, Duffin KL, MacPhail L (1994) Heterogeneity of plasma tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 5:551–559

    CAS  PubMed  Google Scholar 

  343. Novotny WF, Girard TJ, Miletich JP, Broze GJ Jr (1989) Purification and characterization of the lipoprotein-associated coagulation inhibitor from human plasma. J Biol Chem 264:18832–18837

    CAS  PubMed  Google Scholar 

  344. Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP (1990) Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci USA 87: 8869–8873

    CAS  PubMed  Google Scholar 

  345. Broze GJ Jr (1995) Tissue factor pathway inhibitor and the current concept of blood coagulation. Blood Coagul Fibrinolysis 6 [Suppl 1]: S7–S13

    Google Scholar 

  346. Lindhout T, Willems G, Blezer R, Hemker HC (1994) Kinetics of the inhibition of human factor Xa by full-length and truncated recombinant tissue factor pathway inhibitor. Biochem J 297:131–136

    CAS  PubMed  Google Scholar 

  347. Huang ZF, Wun TC, Broze GJ Jr (1993) Kinetics of factor Xa inhibition by tissue factor pathway inhibitor. J Biol Chem 268:26950–26955

    CAS  PubMed  Google Scholar 

  348. Huang ZF, Broze G Jr (1997) Consequences of tissue factor pathway inhibitor gene-disruption in mice. Thromb Haemost 78:699–704

    CAS  PubMed  Google Scholar 

  349. Jesty J (1978) The inhibition of activated bovine coagulation factors X and VII by antithrombin III. Arch Biochem Biophys 185:165–173

    CAS  PubMed  Google Scholar 

  350. Olson ST, Shore JD (1982) Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem 257: 14891–14895

    CAS  PubMed  Google Scholar 

  351. Casu B, Oreste P, Torri G, Zoppetti G, Choay J, Lormeau JC, Petitou M, Sinay P (1981) The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13 C nuclear-magnetic-resonance studies. Biochem J 197:599–609

    CAS  PubMed  Google Scholar 

  352. Schwartz RS, Bauer KA, Rosenberg RD, Kavanaugh EJ, Davies DC, Bogdanoff DA (1989) Clinical experience with antithrombin III concentrate in treatment of congenital and acquired deficiency of antithrombin. The Antithrombin III Study Group. Am J Med 87: 53S-60S

    Google Scholar 

  353. von Blohn G, Hellstern P, Köhler M, Scheffler P, Wenzel E (1986) Clinical aspects of acquired antithrombin III deficiency. Behring Inst Mitt 79:200–215

    Google Scholar 

  354. Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S (1990) Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1–16

    CAS  PubMed  Google Scholar 

  355. Krishnaswamy S, Jones KC, Mann KG (1988) Prothrombinase complex assembly. Kinetic mechanism of enzyme assembly on phospholipid vesicles. J Biol Chem 263:3823–3834

    CAS  PubMed  Google Scholar 

  356. Krishnaswamy S, Mann KG (1988) The binding of factor Va to phospholipid vesicles. J Biol Chem 263:5714–5723

    CAS  PubMed  Google Scholar 

  357. Krishnaswamy S (1990) Prothrombinase complex assembly. Contributions of protein-protein and protein-membrane interactions toward complex formation. J Biol Chem 265:3708–3718

    CAS  PubMed  Google Scholar 

  358. Tracy PB, Nesheim ME, Mann KG (1981) Coordinate binding of factor Va and factor Xa to the unstimulated platelet. J Biol Chem 256:743–751

    CAS  PubMed  Google Scholar 

  359. Krishnaswamy S, Field KA, Edgington TS, Morrissey JH, Mann KG (1992) Role of the membrane surface in the activation of human coagulation factor X. J Biol Chem 267:26110–26120

    CAS  PubMed  Google Scholar 

  360. Mann KG (1976) Prothrombin. Methods Enzymol 45:123–156

    CAS  PubMed  Google Scholar 

  361. Kalafatis M, Xue J, Lawler CM, Mann KG (1994) Contribution of the heavy and light chains of factor Va to the interaction with factor Xa. Biochemistry 33:6538–6545

    CAS  PubMed  Google Scholar 

  362. Walker RK, Krishnaswamy S (1993) The influence of factor Va on the active site of factor Xa. J Biol Chem 268:13920–13929

    CAS  PubMed  Google Scholar 

  363. Warner ED, Brinkhous KM, Smith HP (1936) A quantitative study of blood clotting. Am J Physiol 114:667–675

    CAS  Google Scholar 

  364. Quick AJ (1999) On the constitution of prothrombin. Am J Physiol 140:212–220

    Google Scholar 

  365. Langdell RD, Wagner RH, Brinkhous KMW (1953) Effect of antihemophilic factor on one-stage clotting tests: a presumptive test of hemophilia and a single one-stage anti-hemophilic factor assay procedure. J Lab Clin Med 41:7637–7647

    Google Scholar 

  366. Nemerson Y (1988) Tissue factor and hemostasis. Blood 71:1–8

    CAS  PubMed  Google Scholar 

  367. Butenas S, Mann KG (1996) Kinetics of human factor VII activation. Biochemistry 35:1904–1910

    CAS  PubMed  Google Scholar 

  368. Morrison SA, Jesty J (1984) Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma. Blood 63:1338–1347

    CAS  PubMed  Google Scholar 

  369. Krishnaswamy S (1992) The interaction of human factor VIIa with tissue factor. J Biol Chem 267:23696–23706

    CAS  PubMed  Google Scholar 

  370. Silverberg SA, Nemerson Y, Zur M (1977) Kinetics of the activation of bovine coagulation factor X by components of the extrinsic pathway. Kinetic behavior of two-chain factor VII in the presence and absence of tissue factor. J Biol Chem 252:8481–8488

    CAS  PubMed  Google Scholar 

  371. Patek AJ, Taylor F (1937) Hemophilia II: some properties of a substance obtained from normal plasma effective in accelerating the clotting of hemophilic blood. J Clin Invest 16:113–124

    CAS  PubMed Central  PubMed  Google Scholar 

  372. Brinkhous KM (1947) Clotting defect in hemophilia: deficiency in a plasma factor required for platelet utilization. Proc Soc Exp Bio Med 66:117–120

    CAS  Google Scholar 

  373. Aggeler PM, White SG, Glendenning MB (1952) Plasma thromboplastin component (PTC) deficiency: a new disease resembling hemophilia. Proc Soc Exp Bio Med 79:692–694

    CAS  Google Scholar 

  374. Schulman II (1952) Hemorrhagic disease in an infant due to deficiency of a previously undescribed clotting factor. Blood 7:794–807

    CAS  PubMed  Google Scholar 

  375. Tefler TP, Denson KW, Wright DR (1956) A “new” coagulation defect. Br J Haematol 2:308–312

    Google Scholar 

  376. Owren PA, Cooper T (1955) Parahemophilia. Arch Intern Med 95:194–201

    Google Scholar 

  377. Roberts HR, Foster PA (1987) Inherited disorders of prothrombin conversion. Lippincott, Philadelphia, pp 162–181

    Google Scholar 

  378. Wiggins RC, Cochrane CC (1979) The autoactivation of rabbit Hageman factor. J Exp Med 150:1122–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  379. Silverberg M, Dunn JT, Garen L, Kaplan AP (1980) Autoactivation of human Hageman factor. Demonstration utilizing a synthetic substrate. J Biol Chem 255:7281–7286

    CAS  PubMed  Google Scholar 

  380. Scott CF, Silver LD, Schapira M, Colman RW (1984) Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a proco-factor. J Clin Invest 73:954–962

    CAS  PubMed Central  PubMed  Google Scholar 

  381. Scott CF, Silver LD, Purdon AD, Colman RW (1985) Cleavage of human high molecular weight kininogen by factor XIa in vitro. Effect on structure and function. J Biol Chem 260:10856–10863

    CAS  PubMed  Google Scholar 

  382. Ratnoff OD, Coply JE (1955) A familial hemorrhagic trait associated with a deficiency of a clot-promoting fraction of plasma. J Clin Invest 34:602–613

    CAS  PubMed Central  PubMed  Google Scholar 

  383. Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA, Pierce JV, Kaplan AP (1975) Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56:1650–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  384. Saito H, Ratnoff OD, Waldmann R (1975) Fitzgerald trait. Deficiency of a hitherto unrecognized agent, Fitzgerald factor, participating in surface medicated reactions of clotting, fibrinolysis, generation of kinins, and the property of diluted plasma enhancing vascular per-meability(PF/DIL). J Clin Invest 55:1082–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  385. Schmaier AH (1998) Plasma contact activation: a revised hypothesis. Biol Res 31:251–262

    CAS  PubMed  Google Scholar 

  386. Rojkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH (1998) Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 80:74–81

    CAS  PubMed  Google Scholar 

  387. Gailani D, Broze GJ Jr (1991) Factor XI activation in a revised model of blood coagulation. Science 253:909–912

    CAS  PubMed  Google Scholar 

  388. Heldebrant CM, Butkowski RJ, Bajaj SP, Mann KG (1973) The activation of prothrombin. II. Partial reactions, physical and chemical characterization of the intermediates of activation. J Biol Chem 248:7149–7163

    CAS  PubMed  Google Scholar 

  389. Heldebrant CM, Mann KG (1973) The activation of prothrombin. I. Isolation and preliminary characterization of intermediates. J Biol Chem 248:3642–3652

    CAS  PubMed  Google Scholar 

  390. Heldebrant CM, Noyes C, Kingdon HS, Mann KG (1973) The activation of prothrombin. III. The partial amino acid sequences at the amino terminal of prothrombin and the intermediates of activation. Biochem Biophys Res Commun 54:155–160

    CAS  PubMed  Google Scholar 

  391. Mann KG, Bajaj SP, Heldebrant CM, Butkowski RJ, Fass DN (1973) Intermediates of prothrombin activation. Ser Haematol 6:479–493

    CAS  PubMed  Google Scholar 

  392. Malhotra OP, Nesheim ME, Mann KG (1985) The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins. J Biol Chem 260:279–287

    CAS  PubMed  Google Scholar 

  393. Ryan US (1995) Endothelial cells. In: Barker JH, Anderson GL, Menger MD (eds) Critically applied microcirculation research. CRC Press, Boca Raton, FL, pp 407–418

    Google Scholar 

  394. Griendling KK, Alexander RW (1996) Endothelial control of the cardiovascular system: recent advances. FASEB J 10:283–292

    CAS  PubMed  Google Scholar 

  395. Rodgers GM (1999) Endothelium and the regulation of hemostasis. In: Lee GR, Lickens J, Paraskevas F, Green JP, Rodgers GM, Foersten J (eds) Wintrobe’s clinical hematology. Williams and Wilkins, Baltimore, pp 765–773

    Google Scholar 

  396. Colman RW, Marder VJ, Salzman EW, Hirsh J (1994) Overview of hemostasis. In: Colman RW, Hirsh J, Marden VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott, Philadelphia, pp 3–18

    Google Scholar 

  397. Makrides SC, Ryan US (1998) Overview of the endothelium. In: Schafer AI, Loscalzo J (eds) Thrombosis and hemorrhage, Williams and Wilkens, Baltimore, pp 295–306

    Google Scholar 

  398. Esmon CT (1989) The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264:4743–4746

    CAS  PubMed  Google Scholar 

  399. Esmon CT (1987) The regulation of natural anticoagulant pathways. Science 235:1348–1352

    CAS  PubMed  Google Scholar 

  400. Fair DS, Marlar RA, Levin EG (1986) Human endothelial cells synthesize protein S. Blood 67:1168–1171

    CAS  PubMed  Google Scholar 

  401. More L, Sim R, Hudson M, Dhillon AP, Pounder R, Wakefield AJ (1993) Immunohistochemical study of tissue factor expression in normal intestine and idiopathic inflammatory bowel disease. J Clin Pathol 46:703–708

    CAS  PubMed  Google Scholar 

  402. Liu L, Rodgers GM (1996) Characterization of an inducible endothelial cell prothrombin activator. Blood 88:2989–2994

    CAS  PubMed  Google Scholar 

  403. Broze GJ Jr (1995) Tissue factor pathway inhibitor. Thromb Haemost 74:90–93

    CAS  PubMed  Google Scholar 

  404. Stern D, Nawroth P, Handley D, Kisiel W (1985) An endothelial cell-dependent pathway of coagulation. Proc Natl Acad Sci USA 82: 2523–2527

    CAS  PubMed  Google Scholar 

  405. Shuman MA (1986) Thrombin-cellular interactions. Ann NY Acad Sci 485:228–239

    CAS  PubMed  Google Scholar 

  406. Lindahl U, Backstrom G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombinbinding sequence of heparin. Proc Natl Acad Sci USA 77:6551–6555

    CAS  PubMed  Google Scholar 

  407. Marcum JA, Rosenberg RD (1984) Anticoagulantly active heparinlike molecules from vascular tissue. Biochemistry 23:1730–1737

    CAS  PubMed  Google Scholar 

  408. Tollefsen DM, Pestka CA (1985) Heparin cofactor II activity in patients with disseminated intravascular coagulation and hepatic failure. Blood 66:769–774

    CAS  PubMed  Google Scholar 

  409. Ryan J, Brett J, Tijburg P, Bach RR, Kisiel W, Stern D (1992) Tumor necrosis factor-induced endothelial tissue factor is associated with subendothelial matrix vesicles but is not expressed on the apical surface. Blood 80:966–974

    CAS  PubMed  Google Scholar 

  410. Philips M, Juul AG, Thorsen S (1984) Human endothelial cells produce a plasminogen activator inhibitor and a tissue-type plasminogen activator-inhibitor complex. Biochim Biophys Acta 802:99–110

    CAS  PubMed  Google Scholar 

  411. Lee MH, Vosburgh E, Anderson K, McDonagh J (1993) Deficiency of plasma plasminogen activator inhibitor 1 results in hyperfibrinolytic bleeding. Blood 81:2357–2362

    CAS  PubMed  Google Scholar 

  412. Schleef RR, Higgins DL, Pillemer E, Levitt LJ (1989) Bleeding diathesis due to decreased functional activity of type 1 plasminogen activator inhibitor. J Clin Invest 83:1747–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  413. Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D (1992) Brief report: complete deficiency of plasminogen-activator inhibitor type 1 due to a frame-shift mutation. N Engl J Med 327:1729–1733

    CAS  PubMed  Google Scholar 

  414. Nilsson IM, Ljungner H, Tengborn L (1985) Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: low concentration of plasminogen activator or increased concentration of plasminogen activator inhibitor. Br Med J (Clin Res) 290:1453–1456

    CAS  Google Scholar 

  415. Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9

    CAS  PubMed  Google Scholar 

  416. Paramo JA, Colucci M, Collen D (1985) Plasminogen activation inhibitor in the blood of particles with coronary artery disease. Br Med J 291:573–574

    CAS  Google Scholar 

  417. Juhan-Vague I, Alessi MC, Vague P (1991) Increased plasma plasminogen activator inhibitor 1 levels. A possible link between insulin resistance and atherothrombosis. Diabetologia 34:457–462

    CAS  PubMed  Google Scholar 

  418. Schneiderman J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskutoff DJ (1992) Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A 89:6998–7002

    CAS  PubMed Central  PubMed  Google Scholar 

  419. Lupu F, Bergonzelli GE, Heim DA, Cousin E, Genton CY, Bachmann F, Kruithof EK (1993) Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscler Thromb 13:1090–1100

    CAS  PubMed  Google Scholar 

  420. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    CAS  PubMed  Google Scholar 

  421. Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley, K.A. Gayle RB,Maliszewski CR (1997) The endothelial cell ecto-AD-Pase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  422. Moncada S (1982) Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol 76:3–31

    CAS  PubMed  Google Scholar 

  423. Body SC (1996) Platelet activation and interactions with the microvasculature. J Cardiovasc Pharmacol 27 [Suppl 1]:S13–S25

    Google Scholar 

  424. Mann KG, van’t Veer C, Cawthern K, Butenas S (1998) The role of the tissue factor pathway in initiation of coagulation. Blood Coagul Fibrinolysis 9 [Suppl 1]:S3–S7

    Google Scholar 

  425. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89:2429–2442

    CAS  PubMed  Google Scholar 

  426. Levin EG, Santell L, Osborn KG (1997) The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. J Cell Sci 110:139–148

    CAS  PubMed  Google Scholar 

  427. Grant PJ, Medcalf RL (1990) Hormonal regulation of haemostasis and the molecular biology of the fibrinolytic system. Clin Sci (Colch) 78:3–11

    CAS  Google Scholar 

  428. Hajjar KA, Hamel NM, Harpel PC, Nachman RL (1987) Binding of tissue plasminogen activator to cultured human endothelial cells. J Clin Invest 80:1712–1719

    CAS  PubMed Central  PubMed  Google Scholar 

  429. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    CAS  PubMed  Google Scholar 

  430. Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919

    CAS  PubMed  Google Scholar 

  431. Bachmann F, Kruithof IE (1984) Tissue plasminogen activator: chemical and physiological aspects. Semin Thromb Hemost 10:6–17

    CAS  PubMed  Google Scholar 

  432. Blasi F, Vassalli JD, Dano K (1987) Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J Cell Biol 104:801–804

    CAS  PubMed  Google Scholar 

  433. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    CAS  PubMed  Google Scholar 

  434. Blasi F (1988) Surface receptors for urokinase plasminogen activation. Fibrinolysis 2:73

    CAS  Google Scholar 

  435. Rodgers GM, Shuman MA (1985) Characterization of the interaction between factor Xa and bovine aortic endothelial cells. Biochim Biophys Acta 844:320–329

    CAS  PubMed  Google Scholar 

  436. Charo IF, Shak S, Karasek MA, Davison PM, Goldstein IM (1984) Prostaglandin I2 is not a major metabolite of arachidonic acid in cultured endothelial cells from human foreskin microvessels. J Clin Invest 74:914–919

    CAS  PubMed Central  PubMed  Google Scholar 

  437. Speiser W, Anders E, Preissner KT, Wagner O, Muller-Berghaus G (1987) Differences in coagulant and fibrinolytic activities of cultured human endothelial cells derived from omental tissue micro-vessels and umbilical veins. Blood 69:964–967

    CAS  PubMed  Google Scholar 

  438. Rodgers GM (1988) Hemostatic properties of normal and perturbed vascular cells. FASEB J 2:116–123

    CAS  PubMed  Google Scholar 

  439. Celi A, Lorenzet R, Furie B, Furie BC (1997) Platelet-leukocyte-en-dothelial cell interaction on the blood vessel wall. Semin Hematol 34:327–335

    CAS  PubMed  Google Scholar 

  440. Lasky LA (1992) Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 258:964–969

    CAS  PubMed  Google Scholar 

  441. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    CAS  PubMed  Google Scholar 

  442. Tedder TF, Steeber DA, Chen A, Engel P (1995) The selectins: vascular adhesion molecules. FASEB J 9:866–873

    CAS  PubMed  Google Scholar 

  443. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66

    CAS  PubMed  Google Scholar 

  444. McEver RP (1998) Interactions of leukocytes with the vessel wall. In: Loscalzo J, Schafer AI (eds) Thrombosis and hemorrhage. Williams and Wilkens, Baltimore, pp 321–336

    Google Scholar 

  445. Bargatze RF, Kurk S, Butcher EC, Jutila MA (1994) Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med 180:1785–1792

    CAS  PubMed  Google Scholar 

  446. Tracy PB, Eide LL, Mann KG (1985) Human prothrombinase complex assembly and function on isolated peripheral blood cell populations. J Biol Chem 260:2119–2124

    CAS  PubMed  Google Scholar 

  447. Tracy PB, Rohrbach MS, Mann KG (1983) Functional prothrombinase complex assembly on isolated monocytes and lymphocytes. J Biol Chem 258:7264–7267

    CAS  PubMed  Google Scholar 

  448. Thiagarajan P, Niemetz J (1980) Procoagulant-tissue factor activity of circulating peripheral blood leukocytes. Results of in vivo studies. Thromb Res 17:891–896

    CAS  PubMed  Google Scholar 

  449. Miller CL, Graziano C, Lim RC, Chin M (1981) Generation of tissue factor by patient monocytes: correlation to thromboembolic complications. Thromb Haemost 46:489–495

    CAS  PubMed  Google Scholar 

  450. Osterud B, Due J Jr (1984) Blood coagulation in patients with benign and malignant tumours before and after surgery. Special reference to thromboplastin generation in monocytes. Scand J Haematol 32:258–264

    CAS  PubMed  Google Scholar 

  451. Blakowski SA, Zacharski LR, Beck JR (1986) Postoperative elevation of human peripheral blood monocyte tissue factor coagulant activity. J Lab Clin Med 108:117–120

    CAS  PubMed  Google Scholar 

  452. Crawford N, Scrutton MC (1994) Biochemistry of the blood platelet. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EG (eds) Hemostasis and thrombosis. Churchill Livingstone, New York, pp 89–114

    Google Scholar 

  453. Tuszynski GP, Bevacqua SJ, Schmaier AH, Colman RW, Walsh PN (1982) Factor XI antigen and activity in human platelets. Blood 59:1148–1156

    CAS  PubMed  Google Scholar 

  454. Niewiarowski S, Thomas DP (1969) Platelet factor 4 and adenosine diphosphate release during human platelet aggregation. Nature 222:1269–1270

    CAS  PubMed  Google Scholar 

  455. Levine SP, Wohl H (1976) Human platelet factor IV: purification and characterization by affinity chromatography. Purification of human platelet factor IV. J Biol Chem 251:324–328

    CAS  PubMed  Google Scholar 

  456. Lawler JW, Slayter HS, Coligan JE (1978) Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 253:8609–8616

    CAS  PubMed  Google Scholar 

  457. Koutts J, Walsh PN, Plow EF, Fenton JW, Bouma BN, Zimmerman TS (1978) Active release of human platelet factor VIII-related antigen by adenosine diphosphate, collagen, and thrombin. J Clin Invest 62: 1255–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  458. Keenan JP, Solum NO (1972) Quantitative studies on the release of platelet fibrinogen by thrombin. Br J Haematol 23:461–466

    CAS  PubMed  Google Scholar 

  459. Zucker MB, Mosesson MW, Broekman MJ, Kaplan KL (1979) Release of platelet fibronectin (cold-insoluble globulin) from alpha granules induced by thrombin or collagen; lack of requirement for plasma fibronectin in ADP-induced platelet aggregation. Blood 54:8–12

    CAS  PubMed  Google Scholar 

  460. Viskup RW, Tracy PB, Mann KG (1987) The isolation of human platelet factor V. Blood 69:1188–1195

    CAS  PubMed  Google Scholar 

  461. Schmaier AH, Zuckerberg A, Silverman C, Kuchibhotla J, Tuszynski GP, Colman RW (1983) High-molecular-weight kinino-gen. A secreted platelet protein. J Clin Invest 71:1477–1489

    CAS  PubMed Central  PubMed  Google Scholar 

  462. Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312

    CAS  PubMed  Google Scholar 

  463. Hamburger SA, McEver RP (1990) GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75:550–554

    CAS  PubMed  Google Scholar 

  464. Cronlund AL, Walsh PN (1992) A low-molecular-weight platelet inhibitor of factor XIa: purification, characterization, and possible role in blood coagulation. Biochemistry 31:1685–1694

    CAS  PubMed  Google Scholar 

  465. Bagdasarian A, Colman RW (1978) Subcellular localization and purification of platelet alpha1-antitrypsin. Blood 51:139–156

    CAS  PubMed  Google Scholar 

  466. Schwarz HP, Heeb MJ, Wencel-Drake JD, Griffin JH (1985) Identification and quantitation of protein S in human platelets. Blood 66:1452–1455

    CAS  PubMed  Google Scholar 

  467. Novotny WF, Girard TJ, Miletich JP, Broze GJ Jr (1988) Platelets secrete a coagulation inhibitor functionally and antigenically similar to the lipoprotein-associated coagulation inhibitor. Blood 72:2020–2025

    CAS  PubMed  Google Scholar 

  468. Plow EF, Collen D (1981) The presence and release of alpha 2-anti-plasmin from human platelets. Blood 58:1069–1074

    CAS  PubMed  Google Scholar 

  469. Holt JC, Niewiarowski S (1980) Secretion of plasminogen by washed human platelets. Circulation 62:342

    Google Scholar 

  470. Erickson LA, Hekman CM, Loskutoff DJ (1985) The primary plasminogen-activator inhibitors in endothelial cells, platelets, serum, and plasma are immunologically related. Proc Natl Acad Sci USA 82:8710–8714

    CAS  PubMed  Google Scholar 

  471. Kruithof EK, Tran-Thang C, Bachmann F (1986) Studies on the release of a plasminogen activator inhibitor by human platelets. Thromb Haemost 55:201–205

    CAS  PubMed  Google Scholar 

  472. Antoniades HN (1981) Human platelet-derived growth factor (PDGF): purification of PDGF-I and PDGF-II and separation of their reduced subunits. Proc Natl Acad Sci USA 78:7314–7317

    CAS  PubMed  Google Scholar 

  473. Heldin CH, Westermark B, Wasteson A (1981) Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition. Biochem J 193:907–913

    CAS  PubMed  Google Scholar 

  474. Deuel TF, Huang JS, Proffitt RT, Baenziger JU, Chang D, Kennedy BB (1981) Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J Biol Chem 256:8896–8899

    CAS  PubMed  Google Scholar 

  475. Raines EW, Ross R (1982) Platelet-derived growth factor. I. High-yield purification and evidence for multiple forms. J Biol Chem 257:5154–5160

    CAS  PubMed  Google Scholar 

  476. Childs CB, Proper JA, Tucker RF, Moses HL (1982) Serum contains a platelet-derived transforming growth factor. Proc Natl Acad Sci USA 79:5312–5316

    CAS  PubMed  Google Scholar 

  477. Clemmons DR, Isley WL, Brown MT (1983) Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth. Proc Natl Acad Sci USA 80:1641–1645

    CAS  PubMed  Google Scholar 

  478. King GL, Buchwald S (1984) Characterization and partial purification of an endothelial cell growth factor from human platelets. J Clin Invest 73:392–396

    CAS  PubMed Central  PubMed  Google Scholar 

  479. Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7:52–62

    CAS  PubMed  Google Scholar 

  480. Chesney CM, Harper E, Colman RW (1974) Human platelet collagenase. J Clin Invest 53:1647–1654

    CAS  PubMed Central  PubMed  Google Scholar 

  481. Legrand Y, Caen JP, Robert L, Wautier JL (1977) Platelet elastase and leukocyte elastase are two different entities. Thromb Haemost 37:580–582

    CAS  PubMed  Google Scholar 

  482. McNicol A, Israels SJ (1999) Platelet dense granules: structure, function and implications for haemostasis. Thromb Res 95:1–18

    CAS  PubMed  Google Scholar 

  483. White JG (1987) Views of the platelet cytoskeleton at rest and at work. Ann N Y Acad Sci 509:156–176

    CAS  PubMed  Google Scholar 

  484. Hartwig JH (1998) Platelet morphology. In: Lescalzo J, Schafer AI (eds) Thrombosis and hemorrhage. Williams and Wilkins, Baltimore, pp 207–228

    Google Scholar 

  485. Parise LV, Boudignon-Proudhon C, Keely PJ, Niak UP (1999) Platelets in hemostasis and thrombosis. In: Foersten J, Lukens J, Paraskevas F, Green JP, Rodgers GM (eds) Wintrobe’s clinical hematology. Williams and Wilkens, Baltimore, pp 661–683

    Google Scholar 

  486. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287

    CAS  PubMed  Google Scholar 

  487. Nurden AT (1994) Human platelet membrane glycoproteins. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EG (eds) Hemostasis and thrombosis. Churchill Livingstone, New York, pp 115–165

    Google Scholar 

  488. Bevers EM, Comfurius P, Zwaal RF (1983) Changes in membrane phospholipid distribution during platelet activation. Biochim Bio-phys Acta 736:57–66

    CAS  Google Scholar 

  489. Bennett, JS, Vilaire, G (1979) Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 64:1393–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  490. Plow EF, McEver RP, Coller BS, Woods VL Jr, Marguerie GA, Ginsberg MH (1985) Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor, and thrombospondin on thrombin-stimulated human platelets. Blood 66:724–727

    CAS  PubMed  Google Scholar 

  491. Plow EF, Ginsberg MH (1981) Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. J Biol Chem 256:9477–9482

    CAS  PubMed  Google Scholar 

  492. Weiss HJ, Tschopp TB, Baumgartner HR, Sussman II, Johnson MM, Egan JJ (1974) Decreased adhesion of giant (Bernard-Soulier) platelets to subendothelium. Further implications on the role of the von Willebrand factor in hemostasis. Am J Med 57:920–925

    CAS  PubMed  Google Scholar 

  493. Hagen I, Nurden A, Bjerrum OJ, Solum NO, Caen J (1980) Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann’s thrombasthenia and Bernard-Soulier syndrome. J Clin Invest 65:722–731

    CAS  PubMed Central  PubMed  Google Scholar 

  494. Tobelem G, Levy-Toledano S, Nurden AT, Degos L, Caen JP, Malmsten C, Kindahl H (1979) Further studies on a specific platelet antibody found in Bernard-Soulier syndrome and its effects on normal platelet function. Br J Haematol 41:427–436

    CAS  PubMed  Google Scholar 

  495. Handa M, Titani K, Holland LZ, Roberts JR, Ruggeri ZM (1986) The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem 261:12579–12585

    CAS  PubMed  Google Scholar 

  496. Michelson AD (1992) Thrombin-induced down-regulation of the platelet membrane glycoprotein Ib-IX complex. Semin Thromb Hemost 18:18–27

    CAS  PubMed  Google Scholar 

  497. Michelson AD, Barnard MR (1987) Thrombin-induced changes in platelet membrane glycoproteins Ib, IX, and IIb-IIIa complex. Blood 70:1673–1678

    CAS  PubMed  Google Scholar 

  498. George JN, Torres MM (1988) Thrombin decreases von Willebrand factor binding to platelet glycoprotein Ib. Blood 71:1253–1259

    CAS  PubMed  Google Scholar 

  499. Hourdille P, Heilmann E, Combrie R, Winckler J, Clemetson KJ, Nurden AT (1990) Thrombin induces a rapid redistribution of glycoprotein Ib-IX complexes within the membrane systems of activated human platelets. Blood 76:1503–1513

    CAS  PubMed  Google Scholar 

  500. Stel HV, Sakariassen KS, Scholte BJ, Veerman EC, van der Kwast TH, de Groot PG, Sixma JJ, van Mourik JA (1984) Characterization of 25 monoclonal antibodies to factor VIII-von Willebrand factor: relationship between ristocetin-induced platelet aggregation and platelet adherence to subendothelium. Blood 63:1408–1415

    CAS  PubMed  Google Scholar 

  501. Swords NA, Mann KG (1993) The assembly of the prothrombinase complex on adherent platelets. Arterioscler Thromb 13:1602–1612

    CAS  PubMed  Google Scholar 

  502. Santoro SA (1986) Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 46:913–920

    CAS  PubMed  Google Scholar 

  503. Kunicki TJ, Nugent DJ, Staats SJ, Orchekowski RP, Wayner EA, Carter WG (1988) The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex. J Biol Chem 263:4516–4519

    CAS  PubMed  Google Scholar 

  504. Santoro SA, Rajpara SM, Staatz WD, Woods VL Jr (1988) Isolation and characterization of a platelet surface collagen binding complex related to VLA-2. Biochem Biophys Res Commun 153:217–223

    CAS  PubMed  Google Scholar 

  505. Sugiyama T, Okuma M, Ushikubi F, Sensaki S, Kanaji K, Uchino H (1987) A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood 69:1712–1720

    CAS  PubMed  Google Scholar 

  506. Kehrel B, Kronenberg A, Rauterberg J, Niesing-Bresch D, Niehues U, Kardoeus J, Schwippert B, Tschope D, van de LJ, Clemetson KJ (1993) Platelets deficient in glycoprotein IIIb aggregate normally to collagens type I and III but not to collagen type V Blood 82: 3364–3370

    CAS  PubMed  Google Scholar 

  507. Nieuwenhuis HK, Akkerman JW, Houdijk WP, Sixma JJ (1985) Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature 318:470–472

    CAS  PubMed  Google Scholar 

  508. Kehrel B (2000) Platelet receptors for collagen. Platelets 6:11–16

    Google Scholar 

  509. Alberio L, Dale GL (1998) Flow cytometric analysis of platelet activation by different collagen types present in the vessel wall. Br J Haematol 102:1212–1218

    CAS  PubMed  Google Scholar 

  510. Brass LF (1991) The biochemistry of platelet activation. In: Hoffman R, Benz EJ, Shattil SJ, Furie B, Cohen HJ (eds) Hematology: basic principles and practice. Churchill Livingston, New York, pp 1176–1197

    Google Scholar 

  511. Mammen EF, Barnhart MI, Silik NR et al (1988) “Sticky platelet syndrome” A congenital platelet abnormality predisposing to thrombosis. Folia Haematol 115:361–365

    CAS  Google Scholar 

  512. Bick RL (1998) Sticky platelet syndrome: a common cause of unexplained arterial and venous thrombosis. Clin Appl Thromb Hemost 4:77–81

    Google Scholar 

  513. Berg-Darner E, Henkes H, Trobrisch H, Kuhne D (1997) Sticky platelet syndrome: a cause of neurovascular thrombosis and thromboembolism. Intervent Neuroradiol 3:145–154

    Google Scholar 

  514. Chitter SR, Elschety AE, Roberts GF, Laughlin WR (1998) Sticky platelet syndrome: a case report and review of the literature. Clin Appl Thromb Hemost 4:280–284

    Google Scholar 

  515. Nurden AT, Caen JP (1975) Specific roles for platelet surface glycoproteins in platelet function. Nature 255:720–722

    CAS  PubMed  Google Scholar 

  516. Nurden AT, Caen JP (1974) An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 28:253–260

    CAS  PubMed  Google Scholar 

  517. Berndt MC, Gregory C, Chong BH, Zola H, Castaldi PA (1983) Additional glycoprotein defects in Bernard-Soulier’s syndrome: confirmation of genetic basis by parental analysis. Blood 62:800–807

    CAS  PubMed  Google Scholar 

  518. Clemetson KJ, McGregor JL, James E, Dechavanne M, Luscher EF (1982) Characterization of the platelet membrane glycoprotein abnormalities in Bernard-Soulier syndrome and comparison with normal by surface-labeling techniques and high-resolution two-dimensional gel electrophoresis. J Clin Invest 70:304–311

    CAS  PubMed Central  PubMed  Google Scholar 

  519. Nurden AT, Didry D, Rosa JP (1983) Molecular defects of platelets in Bernard-Soulier syndrome. Blood Cells 9:333–358

    CAS  PubMed  Google Scholar 

  520. Nurden AT (1999) Inherited abnormalities of platelets. Thromb Haemost 82:468–480

    CAS  PubMed  Google Scholar 

  521. Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC (1998) Bernard-Soulier syndrome. Blood 91:4397–4418

    CAS  PubMed  Google Scholar 

  522. Phillips DR, Jenkins CS, Luscher EF, Larrieu M (1975) Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature 257:599–600

    CAS  PubMed  Google Scholar 

  523. Phillips DR, Agin PP (1977) Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 60:535–545

    CAS  PubMed Central  PubMed  Google Scholar 

  524. Nurden AT, Caen JP (1979) The different glycoprotein abnormalities in thrombasthenic and Bernard-Soulier platelets. Semin Hematol 16:234–250

    CAS  PubMed  Google Scholar 

  525. Moroi M, Jung SM, Okuma M, Shinmyozu K (1989) A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 84:1440–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  526. Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K (1995) Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 89:124–130

    CAS  PubMed  Google Scholar 

  527. Ryo R, Yoshida A, Sugano W, Yasunaga M, Nakayama K, Saigo K, Adachi M, Yamaguchi N, Okuma M (1992) Deficiency of P62, a putative collagen receptor, in platelets from a patient with defective collagen-induced platelet aggregation. Am J Hematol 39:25–31

    CAS  PubMed  Google Scholar 

  528. Davey MG, Luscher EF (1967) Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 216: 857–858

    CAS  PubMed  Google Scholar 

  529. Andrews RK, Shen Y, Gardiner EE, Dong JF, Lopez JA, Berndt MC (1999) The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 82:357–364

    CAS  PubMed  Google Scholar 

  530. Vu TK, Wheaton VI, Hung DT, Charo I, Coughlin SR (1991) Domains specifying thrombin-receptor interaction. Nature 353:674–677

    CAS  PubMed  Google Scholar 

  531. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    CAS  PubMed  Google Scholar 

  532. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tarn C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    CAS  PubMed  Google Scholar 

  533. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95:6642–6646

    CAS  PubMed  Google Scholar 

  534. Hou L, Howells GL, Kapas S, Macey MG (1998) The protease-activated receptors and their cellular expression and function in blood-related cells. Br J Haematol 101:1–9

    CAS  PubMed  Google Scholar 

  535. Schmidt VA, Nierman WC, Maglott DR, Cupit LD, Moskowitz KA, Wainer JA, Bahou WF (1998) The human proteinase-activated re-ceptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem 273:15061–15068

    CAS  PubMed  Google Scholar 

  536. Bode AP, Sandberg H, Dombrose FA, Lentz BR (1985) Association of factor V activity with membranous vesicles released from human platelets: requirement for platelet stimulation. Thromb Res 39:49–61

    CAS  PubMed  Google Scholar 

  537. Sandberg H, Bode AP, Dombrose FA, Hoechli M, Lentz BR (1985) Expression of coagulant activity in human platelets: release of membranous vesicles providing platelet factor 1 and platelet factor 3. Thromb Res 39:63–79

    CAS  PubMed  Google Scholar 

  538. George JN, Lewis PC (1978) Studies on platelet plasma membranes. III. Membrane glycoprotein loss from circulating platelets in rabbits: inhibition by aspirin-dipyridamole and acceleration by thrombin. J Lab Clin Med 91:301–306

    CAS  PubMed  Google Scholar 

  539. Blajchman MA, Senyi AF, Hirsh J, Genton E, George JN (1981) Hemostatic function, survival, and membrane glycoprotein changes in young versus old rabbit platelets. J Clin Invest 68:1289–1294

    CAS  PubMed Central  PubMed  Google Scholar 

  540. Khan I, Zucker-Franklin D, Karpatkin S (1975) Microthrombocytosis and platelet fragmentation associated with idiopathic/autoimmune thrombocytopenic purpura. Br J Haematol 31:449–460

    CAS  PubMed  Google Scholar 

  541. Zucker-Franklin D, Karpatkin S (1977) Red-cell and platelet fragmentation in idiopathic autoimmune thrombocytopenic purpura. N Engl J Med 297:517–523

    CAS  PubMed  Google Scholar 

  542. George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, Newman PJ (1986) Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest 78:340–348

    CAS  PubMed Central  PubMed  Google Scholar 

  543. Warkentin TE, Hayward CP, Boshkov LK, Santos AV, Sheppard JA, Bode AP, Kelton JG (1994) Sera from patients with heparin-induced thrombocytopenia generate platelet-derived microparticles with procoagulant activity: an explanation for the thrombotic complications of heparin-induced thrombocytopenia. Blood 84: 3691–3699

    CAS  PubMed  Google Scholar 

  544. Fox JE, Austin CD, Reynolds CC, Steffen PK (1991) Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 266:13289–13295

    CAS  PubMed  Google Scholar 

  545. Wiedmer T, Shattil SJ, Cunningham M, Sims PJ (1990) Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry 29:623–632

    CAS  PubMed  Google Scholar 

  546. Miletich JP, Kane WH, Hofmann SL, Stanford N, Majerus PW (1979) Deficiency of factor Xa-factor Va binding sites on the platelets of a patient with a bleeding disorder. Blood 54:1015–1022

    CAS  PubMed  Google Scholar 

  547. Rosing J, Bevers EM, Comfurius P, Hemker HC, van Dieijen G, Weiss HJ, Zwaal RF (1985) Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder. Blood 65:1557–1561

    CAS  PubMed  Google Scholar 

  548. Weiss HJ, Vicic WJ, Lages BA, Rogers J (1979) Isolated deficiency of platelet procoagulant activity. Am J Med 67:206–213

    CAS  PubMed  Google Scholar 

  549. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ (1989) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264:17049–17057

    CAS  PubMed  Google Scholar 

  550. Bouchard BA, Catcher CS, Thrash BR, Adida C, Tracy PB (1997) Effector cell protease receptor-1, a platelet activation-dependent membrane protein, regulates prothrombinase-catalyzed thrombin generation. J Biol Chem 272:9244–9251

    CAS  PubMed  Google Scholar 

  551. Bouchard BA, Shatos MA, Tracy PB (1997) Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol 17:1–9

    CAS  PubMed  Google Scholar 

  552. Altieri DC, Edgington TS (1989) Sequential receptor cascade for coagulation proteins on monocytes. Constitutive biosynthesis and functional prothrombinase activity of a membrane form of factor V/Va. J Biol Chem 264:2969–2972

    CAS  PubMed  Google Scholar 

  553. Altieri DC, Edgington TS (1990) Identification of effector cell protease receptor-i. A leukocyte-distributed receptor for the serine protease factor Xa. J Immunol 145:246–253

    CAS  PubMed  Google Scholar 

  554. Altieri DC, Stamnes SJ (1994) Protease-dependent T cell activation: ligation of effector cell protease receptor-1 (EPR-1) stimulates lymphocyte proliferation. Cell Immunol 155:372–383

    CAS  PubMed  Google Scholar 

  555. Zaman GJ, Conway EM (2000) The elusive factor Xa receptor: failure to detect transcripts that correspond to the published sequence of EPR-i. Blood 96:145–148

    CAS  PubMed  Google Scholar 

  556. Turitto VT, Weiss HJ, Baumgartner HR (1983) Decreased platelet adhesion on vessel segments in von Willebrand’s disease: a defect in initial platelet attachment. J Lab Clin Med 102:551–564

    CAS  PubMed  Google Scholar 

  557. Stemerman MB, Baumgartner HR, Spaet TH (1971) The subendothelial microfibril and platelet adhesion. Lab Invest 24:179–186

    CAS  PubMed  Google Scholar 

  558. Baumgartner HR, Muggli R, Tschopp TB, Turitto VT (1976) Platelet adhesion, release and aggregation in flowing blood: effects of surface properties and platelet function. Thromb Haemost 35: 124–138

    CAS  PubMed  Google Scholar 

  559. Nesheim ME, Pittman DD, Wang JH, Slonosky D, Giles AR, Kaufman RJ (1988) The binding of 35S-labeled recombinant factor VIII to activated and unactivated human platelets. J Biol Chem 263: 16467–16470

    CAS  PubMed  Google Scholar 

  560. Ahmad SS, Rawala-Sheikh R, Walsh PN (1989) Comparative interactions of factor IX and factor IXa with human platelets. J Biol Chem 264:3244–3251

    CAS  PubMed  Google Scholar 

  561. Ahmad SS, Rawala-Sheikh R, Walsh PN (1989) Platelet receptor occupancy with factor IXa promotes factor X activation. J Biol Chem 264:20012–20016

    CAS  PubMed  Google Scholar 

  562. Rosing J, van Rijn JL, Bevers EM, van Dieijen G, Comfurius P, Zwaal RF (1985) The role of activated human platelets in prothrombin and factor X activation. Blood 65:319–332

    CAS  PubMed  Google Scholar 

  563. Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ (1991) Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266:17261–17268

    CAS  PubMed  Google Scholar 

  564. Sinha D, Seaman FS, Koshy A, Knight LC, Walsh PN (1984) Blood coagulation factor XIa binds specifically to a site on activated human platelets distinct from that for factor XL, J Clin Invest 73:1550–1556

    CAS  PubMed Central  PubMed  Google Scholar 

  565. Greengard JS, Heeb MJ, Ersdal E, Walsh PN, Griffin JH (1986) Binding of coagulation factor XI to washed human platelets. Biochemistry 25:3884–3890

    CAS  PubMed  Google Scholar 

  566. Baglia FA, Walsh PN (1998) Prothrombin is a cofactor for the binding of factor XI to the platelet surface and for platelet-mediated factor XI activation by thrombin. Biochemistry 37:2271–2281

    CAS  PubMed  Google Scholar 

  567. Sinha D, Koshy A, Seaman FS, Walsh PN (1985) Functional characterization of human blood coagulation factor XIa using hybridoma antibodies. J Biol Chem 260:10714–10719

    CAS  PubMed  Google Scholar 

  568. Lipscomb MS, Walsh PN (1979) Human platelets and factor XL Localization in platelet membranes of factor XI-like activity and its functional distinction from plasma factor XL, J Clin Invest 63:1006–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  569. Walsh PN (1972) The effects of collagen and kaolin on the intrinsic coagulant activity of platelets. Evidence for an alternative pathway in intrinsic coagulation not requiring factor XII. Br J Haematol 22:393–405

    CAS  PubMed  Google Scholar 

  570. Nesheim ME, Nichols WL, Cole TL, Houston JG, Schenk RB, Mann KG, Bowie EJ (1986) Isolation and study of an acquired inhibitor of human coagulation factor V. J Clin Invest 77:405–415

    CAS  PubMed Central  PubMed  Google Scholar 

  571. Tracy PB, Giles AR, Mann KG, Eide LL, Hoogendoorn H, Rivard GE (1984) Factor V (Quebec): a bleeding diathesis associated with a qualitative platelet factor V deficiency. J Clin Invest 74:1221–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  572. Janeway CM, Rivard GE, Tracy PB, Mann KG (1996) Factor V Quebec revisited. Blood 87:3571–3578

    CAS  PubMed  Google Scholar 

  573. Lorand L, Konishi K (1964) Activation of the fibrin-stabilizing factor of plasma by thrombin. Arch Biochem Biophys 105:58

    CAS  PubMed  Google Scholar 

  574. Booth NA (1994) The natural inhibitors of fibrinolysis. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD (eds) Haemostasis and thrombosis. Churchill Livingstone, Edinburgh, pp 699–717

    Google Scholar 

  575. Brummel KE, Butenas S, Mann KG (1999) An integrated study of fibrinogen during blood coagulation. J Biol Chem 274:22862–22870

    CAS  PubMed  Google Scholar 

  576. Mosesson MW (1997) Fibrinogen and fibrin polymerization: appraisal of the binding events that accompany fibrin generation and fibrin clot assembly. Blood Coagul Fibrinolysis 8:257–267

    CAS  PubMed  Google Scholar 

  577. Blomback B (1996) Fibrinogen and fibrin-proteins with complex roles in hemostasis and thrombosis. Thromb Res 83:1–75

    CAS  PubMed  Google Scholar 

  578. Kuijper PH, Gallardo Torres HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ (1997) Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. Blood 89:166–175

    CAS  PubMed  Google Scholar 

  579. Weiss HJ, Baumgartner HR, Turitto VT (1987) Regulation of platelet-fibrin thrombi on subendothelium. Ann NY Acad Sci 516:380–397

    CAS  PubMed  Google Scholar 

  580. Seydewitz HH, Witt I (1985) Increased phosphorylation of human fibrinopeptide A under acute phase conditions. Thromb Res 40:29–39

    CAS  PubMed  Google Scholar 

  581. Southan C, Thompson E, Lane DA (1986) Direct analysis of plasma fibrinogen-derived fibrinopeptides by high-performance liquid chromatography. Thromb Res 43:195–204

    CAS  PubMed  Google Scholar 

  582. Nossel HL, Yudelman I, Canfield RE, Butler VP Jr, Spanondis K, Wilner GD, Qureshi GD (1974) Measurement of fibrinopeptide A in human blood. J Clin Invest 54:43–53

    CAS  PubMed Central  PubMed  Google Scholar 

  583. Weitz JI, Cruickshank MK, Thong B, Leslie B, Levine MN, Ginsberg J, Eckhardt T (1988) Human tissue-type plasminogen activator releases fibrinopeptides A and B from fibrinogen. J Clin Invest 82: 1700–1707

    CAS  PubMed Central  PubMed  Google Scholar 

  584. Eckhardt T, Nossel HL, Hurlet-Jensen A, La Gamma KS, Owen J, Auerbach M (1981) Measurement of desarginine fibrinopeptide B in human blood. J Clin Invest 67:809–816

    CAS  PubMed Central  PubMed  Google Scholar 

  585. Hantgan RR, Hermans J (1979) Assembly of fibrin. A light scattering study. J Biol Chem 254:11272–11281

    CAS  PubMed  Google Scholar 

  586. Hantgan R, McDonagh J, Hermans J (1983) Fibrin assembly. Ann NY Acad Sci 408:344–366

    CAS  PubMed  Google Scholar 

  587. Doolittle RF, Cassman KG, Chen R, Sharp JJ, Wooding GL (1972) Correlation of the mode of fibrin polymerization with the pattern of cross-linking. Ann N Y Acad Sci 202:114–126

    CAS  PubMed  Google Scholar 

  588. McKee PA, Schwartz ML, Pizzo SV, Hill RL (1972) Cross-linking of fibrin by fibrin-stabilizing factor. Ann N Y Acad Sci 202:127–148

    CAS  PubMed  Google Scholar 

  589. Gron B, Filion-Myklebust C, Bjornsen S, Haidaris P, Brosstad F (1993) Cross-linked alpha s gamma t-chain hybrids in plasma clots studied by 1D and 2D electrophoresis and Western blotting. Thromb Haemost 70:438–442

    CAS  PubMed  Google Scholar 

  590. Gron B, Filion-Myklebust C, Bennick A, Nieuwenhuizen W, Matsueda GR, Brosstad F (1992) Early cross-linked fibrin in human plasma contains alpha-polymers with intact fibrinopeptide A. Blood Coagul Fibrinolysis 3:731–736

    CAS  PubMed  Google Scholar 

  591. Lorand L, Chenoweth D, Domanik RA (1969) Chain pairs in the crosslinking of fibrin. Biochem Biophys Res Commun 37:219–224

    CAS  PubMed  Google Scholar 

  592. Nuzzenzweig V, Seligmann M, Pelmont J, Grabar P (1961) Les produits de dégradation du fibrinogène humain par la plasmine. I. Séparation et propriétés physico-chimiques. Ann Inst Pasteur 100:377–388

    Google Scholar 

  593. Marder VJ, Shulman NR, Carroll WR (1969) High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physico-chemical and immunological characterization. J Biol Chem 244: 2111–2119

    CAS  PubMed  Google Scholar 

  594. Tataru MC, Heinrich J, Junker R, Schulte H, von Eckardstein A, Assmann G, Koehler E (1999) D-dimers in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. Eur Heart J 20:1493–1502

    CAS  PubMed  Google Scholar 

  595. Wahlander K, Tengborn L, Hellstrom M, Olmarker AH, Peterson LE, Stigendal L, Larson G (1999) Comparison of various D-dimer tests for the diagnosis of deep venous thrombosis. Blood Coagul Fibrinolysis 10:121–126

    CAS  PubMed  Google Scholar 

  596. Scarano L, Prandoni P, Gavasso S, Gomiero W, Carraro G, Girolami A (1999) Failure of soluble fibrin polymers in the diagnosis of clinically suspected deep venous thrombosis. Blood Coagul Fibrinolysis 10:245–250

    CAS  PubMed  Google Scholar 

  597. Quinn DA, Fogel RB, Smith CD, Laposata M, Taylor TB, Johnson SM, Waltman AC, Hales CA (1999) D-dimers in the diagnosis of pulmonary embolism. Am J Respir Crit Care Med 159:1445–1449

    CAS  PubMed  Google Scholar 

  598. Markus G, Evers JL, Hobika GH (1978) Comparison of some properties of native (Glu) and modified (Lys) human plasminogen. J Biol Chem 253:733–739

    CAS  PubMed  Google Scholar 

  599. Markus G, Priore RL, Wissler FC (1979) The binding of tranexamic acid to native (Glu) and modified (Lys) human plasminogen and its effect on conformation. J Biol Chem 254:1211–1216

    CAS  PubMed  Google Scholar 

  600. Olman MA, Hagood JS, Simmons WL, Fuller GM, Vinson C, White KE (1999) Fibrin fragment induction of plasminogen activator inhibitor transcription is mediated by activator protein-1 through a highly conserved element. Blood 94:2029–2038

    CAS  PubMed  Google Scholar 

  601. Hajjar KA, Nachman RL (1988) Endothelial cell-mediated conversion of Glu-plasminogen to Lys-plasminogen. Further evidence for assembly of the fibrinolytic system on the endothelial cell surface. J Clin Invest 82:1769–1778

    CAS  PubMed Central  PubMed  Google Scholar 

  602. Ellis V, Behrendt N, Dano K (1991) Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 266:12752–12758

    CAS  PubMed  Google Scholar 

  603. Miles LA, Plow EF (1985) Binding and activation of plasminogen on the platelet surface. J Biol Chem 260:4303–4311

    CAS  PubMed  Google Scholar 

  604. Blasi F, Behrendt N, Cubellis MV, Ellis V, Lund LR, Masucci MT, Moller LB, Olson DP, Pedersen N, Ploug M (1990) The urokinase receptor and regulation of cell surface plasminogen activation. Cell Differ Dev 32:247–253

    CAS  PubMed  Google Scholar 

  605. Vaheri A, Stephens RW, Salonen EM, Pollanen J, Tapiovaara H (1990) Plasminogen activation at the cell surface-matrix interface. Cell Differ Dev 32:255–262

    CAS  PubMed  Google Scholar 

  606. Knudsen BS, Silverstein RL, Leung LL, Harpel PC, Nachman RL (1986) Binding of plasminogen to extracellular matrix. J Biol Chem 261:10765–10771

    CAS  PubMed  Google Scholar 

  607. Hendriks D, Wang W, Scharpe S, Lommaert MP, van Sande M (1990) Purification and characterization of a new arginine carboxy-peptidase in human serum. Biochim Biophys Acta 1034: 86–92

    CAS  PubMed  Google Scholar 

  608. Bajzar L, Manuel R, Nesheim ME (1995) Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 270:14477–14484

    CAS  PubMed  Google Scholar 

  609. Bajzar L, Nesheim ME, Tracy PB (1996) The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-depen-dent. Blood 88:2093–2100

    CAS  PubMed  Google Scholar 

  610. Broze GJ Jr, Higuchi DA (1996) Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood 88:3815–3823

    CAS  PubMed  Google Scholar 

  611. Bovill EG, Malhotra OP, Mann KG (1990) Mechanisms of vitamin K antagonism. In: Hirsh J (ed) Bailliere’s clinical haematology. Bailliere’s Publishing, pp 555–581

    Google Scholar 

  612. Mann KG and M Kalafataias (1995) The coagulation explosion. Cerebrovasc Dis 5:93–97

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brummel, K.E., Jenny, N.S., Mann, K.G. (2002). Molecular and Cellular Hemostasis and Fibrinolysis. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics