Skip to main content

Wavelet-Based Numerical Homogenization with Applications

  • Conference paper
Multiscale and Multiresolution Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 20))

Abstract

Classical homogenization is an analytic technique for approximating multiscale differential equations. The numbers of scales are reduced and the resulting equations are easier to analyze or numerically approximate. The class of problems that classical homogenization applies to is quite restricted. We shall describe a numerical procedure for homogenization, which starts from a discretization of the multiscale differential equation. In this procedure the discrete operator is represented in a wavelet space and projected onto a coarser subspace. The wavelet homogenization applies to a wider class of problems than classical homogenization. The projection procedure is general and we give a presentation of a framework in Hilbert space, which also applies to the differential equation directly. The wavelet based homogenization technique is applied to discretizations of the Helmholtz equation. In one problem from electromagnetic compatibility a subgrid scale geometrical detail is represented on a coarser grid. In another a wave-guide filter is efficiently approximated in a lower dimension. The technique is also applied to the derivation of effective equations for a nonlinear problem and to the derivation of coarse grid operators in multigrid. These multigrid methods work very well for equations with highly oscillatory or discontinuous coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Anderson. Computational Fluid Dynamics, The Basics with Applications. McGraw-Hill, 1995.

    Google Scholar 

  2. U. Andersson, B. Engquist, G. Ledfelt, and O. Runborg. A contribution to wavelet-based subgrid modeling. Appl. Comput. Harmon. Anal., 7:151–164, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

    Google Scholar 

  4. T. M. Benson, R. J. Bozeat, and P. C. Kendall. Rigorous effective index method for semiconductor Rib waveguides. IEE Proc. J, 139(1):67–70, 1992.

    Google Scholar 

  5. A. Bensoussan, J.-L. Lions, and G. Papanicolau. Asymptotic Analysis for Periodic Structures. North-Holland Publ. Comp., The Netherlands, 1978.

    MATH  Google Scholar 

  6. G. Beylkin and M. Brewster. A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal., 2:327–349, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Beylkin, M. E. Brewster, and A. C. Gilbert. A multiresolution strategy for numerical homogenization of nonlinear ODEs. Appl. Comput. Harmon. Anal., 5:450–486, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math., 44:141–183, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Beylkin and N. Coult. A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems. Appl. Comput. Harmon. Anal., 5:129–155, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Beylkin, J. Dunn, and D. L. Gines. LU factorization of non-standard forms and direct multiresolution solvers. Appl. Comput. Harmon. Anal., 5:156–201, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Chan and T. Mathew. The interface probing technique in domain decomposition. SIAM J. Matrix Anal. Appl., 13(1):212–238, January 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Concus, G. H. Golub, and G. Meurant. Block preconditioning for the conjugate gradient method. SIAM J. Sci. Stat. Comp., 6:220–252, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1991.

    Google Scholar 

  14. M. Dorobantu and B. Engquist. Wavelet-based numerical homogenization. SIAM J. Numer. Anal., 35(2):540–559, April 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res., 27:699–708, 1991.

    Article  Google Scholar 

  16. Y. R. Efendiev, T. Y. Hou, and X. H. Wu. Convergence of a nonconformal multiscale finite element method. SIAM J. Numer. Anal., 37:888–910, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Engquist and T. Y. Hou. Particle method approximation of oscillatory solutions to hyperbolic differential equations. SIAM J. Num. Analysis, 26:289–319, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Engquist and J.-G. Liu. Numerical methods for oscillatory solutions to hyperbolic problems. Comm. Pure Appl. Math., 46:1–36, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Engquist and E. Luo. New coarse grid operators for highly oscillatory coefficient elliptic problems. J. Comput. Phys., 129(2):296–306, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Engquist and E. Luo. Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal., 34(6):2254–2273, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. C. Gilbert. A comparison of multiresolution and classical one-dimensional homogenization schemes. Appl. Comput. Harmon. Anal., 5(1):1–35, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Hackbusch. Multigrid Methods and applications. Springer-Verlag, 1985.

    Google Scholar 

  23. H. A. Haus and Y. Lai. Narrow-band optical channel-dropping filter. J. Lightwave Technol., 10(1):57–61, 1992.

    Article  Google Scholar 

  24. T. Y. Hou and X. H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134(1):169–189, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. J. R. Hughes. Multiscale phenomena: Green’s functions, the dirichlet-to neumann formulation, subgrid, scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg., 127:387–401, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. J. R. Hughes, G. R. Feijöo, L. Mazzei, and J.-B. Quicy. The variational multiscale method — a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166:3–24, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  27. O. Runborg J. Krishnan and I. G. Kevrekidis. Application of wavelet-based reduction methods to models of transport and reaction in heterogeneous media. 2001. To appear.

    Google Scholar 

  28. J. Keller. Geometrical theory of diffraction. J. Opt. Soc. Amer., 52, 1962.

    Google Scholar 

  29. S. Knapek. Matrix-dependent multigrid-homogenization for diffusion problems. SIAM J. Sci. Stat. Comp., 20(2):515–533, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. D. Leon. Wavelet Operators Applied to Multigrid Methods. PhD thesis, Department of Mathematics, UCLA, 2000.

    Google Scholar 

  31. M. Levy, L. Eldata, R. Scarmozzino, R. M. Osgood Jr, P. S. D. Lin, and F. Tong. Fabrication of narrow-band channel-dropping filters. IEEE Photonic. Tech. L., 4(12):1378–1381, 1992.

    Article  Google Scholar 

  32. Z. Li. The Immersed Interface Method—A Numerical Approach for Partial Differential Equations with Interfaces. PhD thesis, Department of Applied Mathematics, Univ. of Washington, 1994.

    Google Scholar 

  33. A.-M. Matache and C. Schwab. Homogenization via p-FEM for problems with microstructure. Appl. Numer. Math., 33:43–59, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Neuss. Homogenisierung und Mehrgitter. PhD thesis, Fakultät Mathematik Universität Heidelberg, 1995.

    Google Scholar 

  35. N. Neuss, W. Jäger, and G. Wittum. Homogenization and multigrid. Preprint 98–04 (SFB 359), 1998.

    Google Scholar 

  36. P.-O. Persson and O. Runborg. Simulation of a waveguide filter using wavelet-based numerical homogenization. J. Comput. Phys., 166:361–382, 2001.

    Article  MATH  Google Scholar 

  37. V. Ramaswamy. Strip-loaded film waveguide. Bell Syst. Tech. J., 53:697–705, 1974.

    Google Scholar 

  38. J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid Methods, Frontiers in Applied Mathematics, pages 73–170. SIAM, 1987.

    Google Scholar 

  39. O. Runborg. Multiscale and Multiphase Methods for Wave Propagation. PhD thesis, Department of Numerical Analysis and Computing Science, KTH, Stockholm, 1998.

    Google Scholar 

  40. F. Santosa and M. Vogelius. First order corrections to the homogenized eigenvalues of a periodic composite medium. SIAM J. Appl. Math., 53:1636–1668, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Z. Steinberg, J. J. McCoy, and M. Mirotznik. A multiresolution approach to homogenization and effective modal analysis of complex boundary value problems. SIAM J. Appl. Math., 60(3):939–966, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Taflove. Computational Electromagnetics, The Finite-Difference Time-Domain Method, chapter 10. Artech House, 1995.

    Google Scholar 

  43. L. Tartar. Etudes des oscillations dans les equations aux dérivées partielle non linéaires, volume 195 of Lecture Notes in Physics, pages 384–412. Springer-Verlag, 1984.

    Google Scholar 

  44. D. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engquist, B., Runborg, O. (2002). Wavelet-Based Numerical Homogenization with Applications. In: Barth, T.J., Chan, T., Haimes, R. (eds) Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56205-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56205-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42420-8

  • Online ISBN: 978-3-642-56205-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics