Skip to main content

Derivation of the Diphasic Biot’s Law for an Elastic Solid Matrix Containing Isolated Fluid Drops

  • Conference paper
  • 217 Accesses

Abstract

We consider a porous medium consisting of a deformable pore structure of the characteristic size ε. The solid skeleton is supposed to be elastic and the pores contain a viscous and incompressible fluid. Moreover, we consider that the solid part is connected but the fluid part is not connected. We analyse the case when the contrast of property number, and then the adimensional viscosity coefficients, are of order ε2. By homogenization we undertake a rigorous derivation of the diphasic effective behavior already observed in papers by M. Biot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acerbi E., Chiado Piat V., Dal Maso G., Percivale D. (1992) An extension theorem from connected sets and homogenization in general periodic domains. Nonlinear Anal., Theory Methods Appl 18, 481–496.

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G. (1989) Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal. 2, 203–222.

    MathSciNet  Google Scholar 

  3. Allaire G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23.6, 1482–1518

    Article  MathSciNet  MATH  Google Scholar 

  4. Hornung U. (1997) Homogenization and Porous Media. Interdisciplinary Applied Mathematics, Springer

    Google Scholar 

  5. Biot M.A. (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range and II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178 and 179–191

    Article  MathSciNet  Google Scholar 

  6. Biot M.A. (1962) Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34, 1254–1264

    Article  MathSciNet  Google Scholar 

  7. Biot M.A. (1962) Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498

    Article  MathSciNet  MATH  Google Scholar 

  8. Burridge R., Keller J.B. (1981) Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 1140–1146

    Article  MATH  Google Scholar 

  9. Clopeau Th., Ferrin J.L., Gilbert R.P., Mikelić A. (2001) Homogenizing the acoustic properties of the seabed: Part II. Math. Comput. Modelling 33 (8–9), 821–841

    Article  MathSciNet  MATH  Google Scholar 

  10. Fasano A., Mikelić A., Primicerio M. (1998) Homogenization of flows through porous media with grains. Advances in Mathematical Sciences and Applications 8, 1–31

    MathSciNet  MATH  Google Scholar 

  11. Jikov V.V., Kozlov S.M., Oleinik O.A. (1994) Homogenization of Differential Operators and Integral Functionals. Springer

    Google Scholar 

  12. Levy T. (1979) Propagation waves in a fluid-saturated porous elastic solid. Internat. J. Engrg. Sei. 17, 1005–1014

    Article  MATH  Google Scholar 

  13. Grandmont O, Maday Y. (1998) Analyse et méthodes numériques pour la simulation de phénomènes d’interaction fluide-structure. ESAIM: Proc. 3, 101–117

    Article  MathSciNet  MATH  Google Scholar 

  14. Grandmont O, Maday Y. (2000), Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal. 34, 609–636

    Article  MathSciNet  MATH  Google Scholar 

  15. Mikelic A. (1994) Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous medium. Glas. Mat. Ser. Ill 29 (49), 57–77

    MathSciNet  MATH  Google Scholar 

  16. Nguetseng G. (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguetseng G. (1990) Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 20.3, 608–623

    Article  MathSciNet  Google Scholar 

  18. Sanchez-Palencia E. (1980) Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 129, Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clopeau, T., Ferrín, J.L., Mikelic, A. (2002). Derivation of the Diphasic Biot’s Law for an Elastic Solid Matrix Containing Isolated Fluid Drops. In: Antonić, N., van Duijn, C.J., Jäger, W., Mikelić, A. (eds) Multiscale Problems in Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56200-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56200-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43584-6

  • Online ISBN: 978-3-642-56200-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics