Skip to main content

Remarks on Γ-Convergence of Penalized Functionals of Ginzburg-Landau Type in One Dimension

  • Conference paper
Multiscale Problems in Science and Technology
  • 217 Accesses

Abstract

In this note we study the Ginzburg-Landau functional

$$ I^\varepsilon (v): = \int_\Omega {(\varepsilon ^2 v''(s)^2 + W(v'(s)) + a(s)(v(s) - g(s))^2 )ds} $$

for υ ∈ H 2per (Ω). Ω (−R is a bounded open set, a ∈ L(Ω), a ≥ α > 0 and

$$ g \in C^1 (\bar \Omega ),|g'| < 1 $$

. W is non-negative continuous function such that W(ξ) = 0 iff ξ ∈ {−1, 1}.

In view of the approach of Alberti and Müller in [1], we formulate the relaxation and minimization problem related to the functional I ε and we discuss the choice of relaxation and blowup procedure adjusted to capture two characteristic small scales associated to the minimizing sequences.

Also, we prove Γ-convergence result for the integrands, and we highlight the idea of proof for Γ-convergence for integral functionals induced by the chosen relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti, G., Müller, S., (2001) A new approach to variational problems with multiple scales. Comm. Pure Appl. Math. 54, 761–825

    Article  MathSciNet  MATH  Google Scholar 

  2. DeSimone, A., Kohn, R.V., Müller, S., Otto, F. (2000) Magnetic microstructures, a paradigm of multiscale problems. In: Ball J.M., Hunt J.OR. (Eds.) Proc. ICI AM 99 (Edinburgh, 1999). Oxford University Press, 175–190

    Google Scholar 

  3. Ball, J.M. (1989) A version of the fundamental theorem for Young measures, in PDE’s and Continuum Models of Phase Transitions. In: Rascle, M. et al. (Eds.), Lecture Notes in Physics 344, Springer, 207–215

    Google Scholar 

  4. Ball, J.M., James, R.D. (1987) Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100, 13–52

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C., Gariepy, R.F. (1992) Lecture notes on measure theory and fine properties of functions. CRC Press, Boca Raton

    Google Scholar 

  6. Kohn, R.V., Müller, S. (1992) Branching of twins near an austensite-twinned-martensite interface. Philosophical Magazine A 66, 697–715

    Article  Google Scholar 

  7. Modica, L., Mortola, S. (1977) Un esempio di Γ-convergenca, Bull. Un. Mat. Ital. (5) 14-B, 285–299

    MathSciNet  MATH  Google Scholar 

  8. Müller, S. (1993) Singular perturbations as a selection criterion for minimizing sequences, Calc. Var. 1, 169–204

    Article  MATH  Google Scholar 

  9. Raguž, A. (2002) preprint

    Google Scholar 

  10. Tartar, L. (1979) Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics, Heriot-Watt symposium IV. Research notes in mathematics, Pitman, 136–192

    Google Scholar 

  11. Tartar, L. (1987) The appearance of oscillations in optimization problems. In: Knops, R.J., Lacey, A.A. (Eds.) Non-classical continuum mechanics. Proceedings of the London mathematical society symposium, Durham, July 1986, London mathematical society lecture notes series 122, Cambridge University Press, 129–150

    Google Scholar 

  12. Tartar, L. (1995) Beyond Young measures, Meccanica 30, 505–526

    Article  MathSciNet  MATH  Google Scholar 

  13. Young, L.C. (1980) Lectures on the calculus of variations and optimal control theory. Chelsea

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raguž, A. (2002). Remarks on Γ-Convergence of Penalized Functionals of Ginzburg-Landau Type in One Dimension. In: Antonić, N., van Duijn, C.J., Jäger, W., Mikelić, A. (eds) Multiscale Problems in Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56200-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56200-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43584-6

  • Online ISBN: 978-3-642-56200-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics