Skip to main content

Homogenization of Random Nonstationary Convection-Diffusion Problem

  • Conference paper
Book cover Multiscale Problems in Science and Technology

Abstract

We deal with nonstationary convection-diffusion problem in a medium with a periodic microstructure whose characteristics are stationary ergodic rapidly oscillating in time random functions. Under the assumption that the coefficients of the corresponding parabolic equation possess certain mixing properties, we show that, in appropriate moving coordinates, the law of the solutions of the original problem converges weakly in the energy functional space to a solution of a stochastic partial differential equation. This limit stochastic PDE is well-posed and thus the limit measure is uniquely defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleptsyna, M., Piatnitski, A. (1997) Homogenization of random parabolic operators. Homogenization and application to material sciences, GAKKUTO Internat. Ser. Math. Sci. Appl. 9, 241–255, Gakkōotosho, Tokyo

    MathSciNet  Google Scholar 

  2. Campillo, F., Kleptsyna, M., Piatnitski, A. (1999) Homogenization of random parabolic operators with large potential. Proc. Seventh Vilnius Conference. Probability Theory and Mathematical Statistics, B. Grigelionis et al. (Eds.) TEV, Vilnius, Lithuania / VSP, Zeist, The Netherlands

    Google Scholar 

  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G. (1978) Asymptotic Analysis for Periodic Structures. North-Holland Publ., Amsterdam

    MATH  Google Scholar 

  4. Jikov V., Kozlov, S., Oleinik, O. (1994) Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin

    Book  Google Scholar 

  5. Kozlov, S.M. (1984) Reducibility of quasiperiodic operators and averaging. Trans. Moscow Math. Soc. 2, 101–126

    Google Scholar 

  6. Kozlov, S.M., Piatnitski, A.L. (1991) Averaging on a background of vanishing viscosity. Math. USSR Sbornik. 70(1), 241–261

    Article  MathSciNet  MATH  Google Scholar 

  7. Pardoux, E. (1999) Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: a probabilistic approach. J. Funct. Anal. 167, 498–520

    Article  MathSciNet  MATH  Google Scholar 

  8. Avellaneda, M., Majda, A.J. (1990) Mathematical models with exact renormalization for turbulent transport. Comm. Math. Phys. 131, 381–429

    Article  MathSciNet  MATH  Google Scholar 

  9. Avellaneda, M., Majda, A.J. (1994) Some examples with features of renormalization for turbulent transport. Philos. Trans. Roy. Soc, London Ser. A. 346(1679), 205–233

    Article  MathSciNet  MATH  Google Scholar 

  10. Fannjiang, A., Papanicolaou, G. (1994) Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408

    Article  MathSciNet  MATH  Google Scholar 

  11. Fannjiang, A., Papanicolaou, G. (1996) Diffusion in Turbulence. Prob. Theor. Rel. Fields. 105, 279–334

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhikov, V. (1997) Diffusion in an Incompressible Random Flow. Functional Analysis Appl. 31(3), 1–11

    MathSciNet  Google Scholar 

  13. Gamier, J. (1997) Homogenization in a periodic and time-dependent potential. SIAM J. Appl. Math. 57(1), 95–111

    Article  MathSciNet  Google Scholar 

  14. Viot, M. (1976) Solutions Faibles d’Equations Dérivées Stochastiques Non Linéaires. Thèse. Université Paris VI

    Google Scholar 

  15. Bouc, R., Pardoux, E. (1984) Asymptotic analysis of PDEs with wide-band noise disturbance expansion of the moments. Stochastic Analysis and Applications. 2(4), 369–422

    Article  MathSciNet  MATH  Google Scholar 

  16. Liptser, R.SH., Shiryaev, A.N. (1989) Theory of Martingales. Kluwer Academic Publishers

    Google Scholar 

  17. Trudinger, N.S. (1968) Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl. Math., 21, 205–226

    Article  MathSciNet  MATH  Google Scholar 

  18. Aronson, D.G. (1967) Bounds for the fundamental solutions of a parabolic equation. Bull. Am. Math. Soc, 73, 890–896

    Article  MathSciNet  MATH  Google Scholar 

  19. Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N. (1968) Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc, Rhode Island

    Google Scholar 

  20. Billingsley, P. (1968) Convergence of Probability Measures. John Wiley&Sons, New York

    MATH  Google Scholar 

  21. Da Prato, G., Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleptsyna, M., Piatnitski, A. (2002). Homogenization of Random Nonstationary Convection-Diffusion Problem. In: Antonić, N., van Duijn, C.J., Jäger, W., Mikelić, A. (eds) Multiscale Problems in Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56200-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56200-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43584-6

  • Online ISBN: 978-3-642-56200-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics