Dynamical Clustering of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance

  • Marie Chavent
  • Yves Lechevallier
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


In order to extend the dynamical clustering algorithm to interval data sets, we define the prototype of a cluster by optimization of a classical adequacy criterion based on Hausdorff distance. Once this class prototype properly defined we give a simple and converging algorithm for this new type of interval data.


Hausdorff Distance Interval Data Symbolic Data Dynamical Cluster Adequacy Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AUBIN, J.P. (1994): Initiation á l’analyse appliquäe, Masson.Google Scholar
  2. BOCK H.H. (2001): Clustering algorithms and Kohonen maps for symbolic data. Proc. ICNCB, Osaka, 203–215.Google Scholar
  3. BOCK H.H. and DIDAY, E. (eds.) (2000): Analysis of symbolic data. Exploratory methods for extracting statistical information from complex data. Springer Verlag, Heidelberg.Google Scholar
  4. DE CARVALHO, F.A.T. (1998): Extension based proximities coefficients between boolean symbolic objects. In: C. Hayashi et al. (eds): Data Science, Classification and Related Methods, Springer Verlag, 370–378.Google Scholar
  5. DE CARVALHO, F.A.T, DE SOUZA, R.M., VERDE, R. (2001): Symbolic classifier based on modal symbolic descriptions. Proc. CLADAG2001, Univ. de Palermo.Google Scholar
  6. DIDAY, E. (1971): La méthode des nuées dynamiques. Rev. Stat. Appliquées, XXX (2), 19–34.Google Scholar
  7. DIDAY, E. (1988): The symbolic approach in clustering and related methods of data analysis: The basic choice. In: H.H. Bock (ed.): Classification and related methods of data anlysis. Proc. IFCS-87, North Holland, Amsterdam, 673–684.Google Scholar
  8. DIDAY, E., and SIMON, J.C. (1976): Clustering analysis. In: K.S. Fu (ed.): Digital Pattern Clasification. Springer Verlag, 47–94.CrossRefGoogle Scholar
  9. ICHINO, M. and YAGUCHI, H. (1994): Generalized Minkowski metrics for mixed feature type data analysis. IEEE Transactions on Systems, Man and Cybernetics, 24 (4), 698–708.MathSciNetCrossRefGoogle Scholar
  10. MACQUEEN, J. (1967): Some methods for classification and analysis of multivariate observations. In: L.M. LeCam et al. (eds.): Proc. 5th Berkeley Symp. on Math. Stat. Proba., University of California Press, Los Angeles, vol 1, 281–297.Google Scholar
  11. SPATH, H. (1980): Cluster analysis algorithms, Horwood Publishers/Wiley, New York.Google Scholar
  12. VERDE, R., DE CARVALHO, F.A.T., LECHEVALLIER, Y. (2000): A dynamical clustering algorithm for multi-nominal data. In: H.A.L. Kiers et al. (eds.): Data Analysis, Classification and Related methods. Springer Verlag, 387–394.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marie Chavent
    • 1
  • Yves Lechevallier
    • 2
  1. 1.Mathématiques Appliquées de Bordeaux, UMR 5466 CNRSUniversité Bordeaux 1-351Talence CedexFrance
  2. 2.Domaine de Voluceau- RocquencourtINRIA- Institut National de Recherche en Informatique et en AutomatiqueLe Chesnay CedexFrance

Personalised recommendations