Skip to main content

Quartet Trees as a Tool to Reconstruct Large Trees from Sequences

  • Conference paper
Classification, Clustering, and Data Analysis

Abstract

We suggest a method to reconstruct phylogenetic trees from a large set of aligned sequences. Our approach is based upon a modified version of the quartet puzzling algorithm and does not require the computation of all \(\left( {\begin{array}{*{20}{c}} n \\ 4 \end{array}} \right)\) quartets, if n sequences are aligned. We show that the phylogenetic resolution of the resulting tree depends on the number of quartets one is willing to analyze. As an biological example we study the alignment of 215 red algae sequences obtained from the European ssu rRNA Database Finally, we discuss several modifications and extensions of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BANDELT, H.-J. and DRESS, A. (1986): Reconstructing the Shape of a Tree from Observed Dissimilarity Data. Adv. Appl. Math., 7, 309–343.

    Article  MathSciNet  MATH  Google Scholar 

  • BARTHELEMY, J. P. and GUENOCHE, A. (1991): Trees and Proximity Representations. Interscience Series in Discrete Mathematics and Optimization, Wiley, New York.

    MATH  Google Scholar 

  • DRESS, A., VON HAESELER, A., and KRÜGER, M. (1986): Reconstructing Phylogenetic Trees Using Variants of the Four-Point Condition. Studien zur Klassifikation, 17, 299–305.

    Google Scholar 

  • FELSENSTEIN, J. (1981): Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 17, 368–76.

    Article  Google Scholar 

  • FITCH, W. M. (1971): Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool., 20, 406–416.

    Article  Google Scholar 

  • FITCH, W. M. (1981): A Non-Sequential Method for Constructing Trees and Hierarchical Classifications. J. Mol. Evol., 18, 30–37.

    Article  Google Scholar 

  • HUSON, D. H., NETTLES, S. M., and WARNOW, T. J. (1999): Disk-Covering, a Fast-Converging Method for Phylogenetic Reconstruction. J. Comp. Biol., 6, 369–386.

    Article  Google Scholar 

  • MARGUSH, T. and MCMORRIS, F. R. (1981): Consensus n-trees. Bull. Math. Biol., 43, 239–244.

    MathSciNet  MATH  Google Scholar 

  • VAN DE PEER, Y., DE RIJK, P., WUYTS, J., WINKELMANS, T., and DE WACHTER, R. (2000): The European Small Subunit Ribosomal RNA Database. Nucleic Acids Res., 28, 175–176.

    Article  Google Scholar 

  • RAMBAUT, A. and GRASSLY, N. C. (1997): Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci., 13, 235–238.

    Google Scholar 

  • SAITOU, N. and NEI, M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

    Google Scholar 

  • SATTATH, S. and TVERSKY, A. (1977): Additive Similarity Trees. Psychometrika, 42, 319–345.

    Article  Google Scholar 

  • SCHMIDT, H., STRIMMER, K., VINGRON, M., and VON HAESELER, A. (in press): TREE-PUZZLE: Maximum Likelihood Phylogenetic Analysis Using Quartets and Parallel Computing. Bioinformatics.

    Google Scholar 

  • STRIMMER, K., GOLDMAN, N., and VON HAESELER, A. (1997): Bayesian Probabilities and Quartet Puzzling. Mol. Biol. Evol., 1.4, 210–211.

    Article  Google Scholar 

  • STRIMMER, K. and VON HAESELER, A. (1996): Quartet Puzzling: A Quartet Maximum Likelihood Method for Reconstructing Tree Topologies. Mol. Biol. Evol., 13, 964–969.

    Article  Google Scholar 

  • SWOFFORD, D. L., OLSEN, G. J., WADDELL, P. J., and HILLIS, D. M. (1996): Phylogenetic Inference. In: D. M. Hillis, C. Moritz, and B. K. Mahle (eds.), Molecular Systematics, Sinauer Associates, Sunderland, 407–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, H.A., von Haeseler, A. (2002). Quartet Trees as a Tool to Reconstruct Large Trees from Sequences. In: Jajuga, K., Sokołowski, A., Bock, HH. (eds) Classification, Clustering, and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56181-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56181-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43691-1

  • Online ISBN: 978-3-642-56181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics