Quartet Trees as a Tool to Reconstruct Large Trees from Sequences

  • Heiko A. Schmidt
  • Arndt von Haeseler
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We suggest a method to reconstruct phylogenetic trees from a large set of aligned sequences. Our approach is based upon a modified version of the quartet puzzling algorithm and does not require the computation of all \(\left( {\begin{array}{*{20}{c}} n \\ 4 \end{array}} \right)\) quartets, if n sequences are aligned. We show that the phylogenetic resolution of the resulting tree depends on the number of quartets one is willing to analyze. As an biological example we study the alignment of 215 red algae sequences obtained from the European ssu rRNA Database Finally, we discuss several modifications and extensions of the algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BANDELT, H.-J. and DRESS, A. (1986): Reconstructing the Shape of a Tree from Observed Dissimilarity Data. Adv. Appl. Math., 7, 309–343.MathSciNetzbMATHCrossRefGoogle Scholar
  2. BARTHELEMY, J. P. and GUENOCHE, A. (1991): Trees and Proximity Representations. Interscience Series in Discrete Mathematics and Optimization, Wiley, New York.zbMATHGoogle Scholar
  3. DRESS, A., VON HAESELER, A., and KRÜGER, M. (1986): Reconstructing Phylogenetic Trees Using Variants of the Four-Point Condition. Studien zur Klassifikation, 17, 299–305.Google Scholar
  4. FELSENSTEIN, J. (1981): Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 17, 368–76.CrossRefGoogle Scholar
  5. FITCH, W. M. (1971): Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool., 20, 406–416.CrossRefGoogle Scholar
  6. FITCH, W. M. (1981): A Non-Sequential Method for Constructing Trees and Hierarchical Classifications. J. Mol. Evol., 18, 30–37.CrossRefGoogle Scholar
  7. HUSON, D. H., NETTLES, S. M., and WARNOW, T. J. (1999): Disk-Covering, a Fast-Converging Method for Phylogenetic Reconstruction. J. Comp. Biol., 6, 369–386.CrossRefGoogle Scholar
  8. MARGUSH, T. and MCMORRIS, F. R. (1981): Consensus n-trees. Bull. Math. Biol., 43, 239–244.MathSciNetzbMATHGoogle Scholar
  9. VAN DE PEER, Y., DE RIJK, P., WUYTS, J., WINKELMANS, T., and DE WACHTER, R. (2000): The European Small Subunit Ribosomal RNA Database. Nucleic Acids Res., 28, 175–176.CrossRefGoogle Scholar
  10. RAMBAUT, A. and GRASSLY, N. C. (1997): Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci., 13, 235–238.Google Scholar
  11. SAITOU, N. and NEI, M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.Google Scholar
  12. SATTATH, S. and TVERSKY, A. (1977): Additive Similarity Trees. Psychometrika, 42, 319–345.CrossRefGoogle Scholar
  13. SCHMIDT, H., STRIMMER, K., VINGRON, M., and VON HAESELER, A. (in press): TREE-PUZZLE: Maximum Likelihood Phylogenetic Analysis Using Quartets and Parallel Computing. Bioinformatics.Google Scholar
  14. STRIMMER, K., GOLDMAN, N., and VON HAESELER, A. (1997): Bayesian Probabilities and Quartet Puzzling. Mol. Biol. Evol., 1.4, 210–211.CrossRefGoogle Scholar
  15. STRIMMER, K. and VON HAESELER, A. (1996): Quartet Puzzling: A Quartet Maximum Likelihood Method for Reconstructing Tree Topologies. Mol. Biol. Evol., 13, 964–969.CrossRefGoogle Scholar
  16. SWOFFORD, D. L., OLSEN, G. J., WADDELL, P. J., and HILLIS, D. M. (1996): Phylogenetic Inference. In: D. M. Hillis, C. Moritz, and B. K. Mahle (eds.), Molecular Systematics, Sinauer Associates, Sunderland, 407–514.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Heiko A. Schmidt
    • 1
  • Arndt von Haeseler
    • 2
  1. 1.Max-Planck-Institut für molekulare GenetikBerlinGermany
  2. 2.Max-Planck-Institut für evolutionäre AnthropologieLeipzigGermany

Personalised recommendations