Multiple Consensus Trees

  • François-Joseph Lapointe
  • Guy Cucumel
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A consensus function takes as input a profile of trees representing the relationships among overlapping or identical sets of objects and returns a tree that is in some sense closest to the entire profile. A single tree is obtained by most consensus functions, although this solution may not always be representative of the profile of input trees. If a unique consensus tree is not suitable, how many consensus trees are needed? In this paper, we propose a procedure for the computation of multiple consensus trees to summarize a profile of input trees. Different stopping rules are discussed to determine the optimal number of consensus trees. This procedure is developed in the special case of the average consensus method for weighted trees. An application to phylogenetic trees is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BUNEMAN, P. (1971): The Recovery of Trees From Measures of Dissimilarity. In: F.R. Hudson, D.G. Kendall and P. Tautu (Eds.): Mathematics in Archeological and Historical Sciences Edinburgh University Press, Edinburgh, 387–395.Google Scholar
  2. CAVALLI-SFORZA, L. L., and EDWARDS, A. W. F. (1967): Phylogenetic Analysis: Models and Estimation Procedures. American Journal of Human Genetics, 19, 233–257.Google Scholar
  3. CUCUMEL, G. (1990): Construction d’une hiérarchie consensus l’aide d’une ultramétrique centrale. In: Recueil des Textes des Présentations du Colloque sur les Méthodes et Domaines d’Application de la Statistique 1990. Bureau de la Statistique du Québec, Québec, 306–312.Google Scholar
  4. DE SOETE, G. (1983): A Least Squares Algorithm for Fitting Additive Trees to Proximity Data. Psychometrika, 48, 621–626.CrossRefGoogle Scholar
  5. FITCH, W. M., and MARGOLIASH, E. (1967): Construction of Phylogenetic Trees. Science, 155, 279–284.CrossRefGoogle Scholar
  6. HARTIGAN, J.A. (1967): Representation of Similarity Matrices by Trees. Journal of the American Statistical Association, 62, 1140–1158.MathSciNetCrossRefGoogle Scholar
  7. LAPOINTE, F.-J. and CUCUMEL, G. (1997): The Average Consensus Procedure: Combination of Weighted Trees Containing Identical or Overlapping Sets of Objects. Systematic Biology, 46, 306–312.CrossRefGoogle Scholar
  8. LEGENDRE, P., and LEGENDRE, L. (1998): Numerical Ecology, Second Edition. Elsevier, Amsterdam.Google Scholar
  9. MACQUEEN, J. (1967): Some Methods for Classification and Analysis of Multivariate Observations. In: L. M. LeCam and J. Neyman (Eds.)Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. University of Califo rnia Press, Berkeley, 281–297.Google Scholar
  10. MAKARENKOV, V., and LECLERC, B. (1999): The Fitting of a Tree Metric According to a Weighted Least-squares Criterion. Journal of Classification, 16, 3–26.MathSciNetzbMATHCrossRefGoogle Scholar
  11. MILLIGAN, G. W., and COOPER, M. C. (1985): An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika, 50, 159–179.CrossRefGoogle Scholar
  12. SPRINGER, M. S., AMRINE, H. M., BURK, A., and STANHOPE, M. J. (1999): Additional Support for Afrotheria and Paenungalata, the Performance of Mitochondrial versus Nuclear Genes, and the Impact of Data Partitions with Heterogeneous Base Composition. Systematic Biology, 48, 65–75.CrossRefGoogle Scholar
  13. WARD, J. H. (1963): Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236–244.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • François-Joseph Lapointe
    • 1
  • Guy Cucumel
    • 2
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.École des sciences de la gestionUniversité du Québec à MontréalMontréalCanada

Personalised recommendations