Obtaining Reducts with a Genetic Algorithm

  • José Luis Espinoza
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Given a data table associated with p qualitative attributes measured on n objects, grouped clasified in k classes or categories, a rough set of that table is a subset of the p attributes that produce the same classification of the individuals than all the attributes together. In this paper we present a genetic algorithm to calculate some reducts of such a data table. We propose a fitness function and an evolutive program, with the modifications to assure convergence. Finally, we present some numerical results.


Genetic Algorithm Fitness Function Data Table Qualitative Attribute Roulette Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, L. and Steenstrup, M. (1987): Genetic algorithms and simulated annealing: an overview. In: L. Davis (Ed.): Genetic Algorithms and Simulated Annealing. Pitman, London.Google Scholar
  2. Espinoza, J. L. (1998): Conjuntos Aproximados y Algoritmos Genéticos. In: W. Castillo, and J. Trejos (Eds.): XI Simposio Internacional de Métodos Matemdticos Aplicados a las Ciencias. Univ. of Costa Rica, Tech. Inst. of Costa Rica, 215–223.Google Scholar
  3. Espinoza, J. L. (1999): Obtencidn de Conjuntos Aproximados Mediante Algoritmos Genéticos. Unpublished Magister Scientiae Dissertation, Tech. Inst. of Costa Rica.Google Scholar
  4. Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading-Mass.zbMATHGoogle Scholar
  5. Pawlak, Z. (1982): Rough sets. International Journal of Computer and Information Sciences, 11(5), 341-356.Google Scholar
  6. Pawlak, Z. (1985): Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Publishing Co., Dordrecht.Google Scholar
  7. Pawlak, Z. (1998): Reasoning about Data–A Rough Set Perspective. In: L. Polkowski, and A. Skowron (Eds.): Rough Sets and Current Trends in Computing. Springer, Heidelberg, 25–34.CrossRefGoogle Scholar
  8. Rudolph, G. (1994): Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, Vol. 5, No. 1, January. Google Scholar
  9. Trejos, J. (1994): Contribution à l’Acquisition Automatique de Connaissances à Partir de Données Qualitatives. Thèse de Doctorat, Université Paul Sabatier, Toulouse. Google Scholar
  10. Wroblewski, J. (1998): Genetic Algorithms in Decomposition and Classification Problems. In: L. Polkowski, and A. Skowron (Eds.): Rough Sets in Knowledge Discovery 2. Springer, Heidelberg, 471–487.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • José Luis Espinoza
    • 1
  1. 1.School of MathematicsTechnological Institute of Costa RicaCartagoCosta Rica

Personalised recommendations