Advertisement

Representation and Evaluation of Partitions

  • Alain Guénoche
  • Henri Garreta
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Many methods lead to build a partition of a finite set, given a metric. In this text we propose some criteria to evaluate the quality of each class and other parameters to compare several partitions on the same data set. Then, we indicate how to represent graphically a partition as a tree of boxes, each one containing information about the quality of a class.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARABIE, P. and HUBERT, L. (1996): An Overview of Combinatorial Data Analysis. In: P. Arabie, L. Hubert and G. de Soete (Eds.): Clustering and Classification. World Scientific Publ., River Edge, N.J., 5–63.Google Scholar
  2. BRUCKER, P. (1978): On the complexity of clustering problems. In: M. Beckmann and H. Künzi (Eds.): Optimization and Operations Research. Lecture Notes in Economics and Mathematical Systems, 157, Springer-Verlag, Heidelberg, 4554.Google Scholar
  3. GUENOCHE, A. (2002): Partitions optimisées selon différents critères. Mathématiques, Informatique et Sciences humaines, to appear.Google Scholar
  4. HANSEN, P. and JAUMARD, B. (1997): Cluster analysis and mathematical programming Mathematical Programming, 79, 191–215.MathSciNetzbMATHGoogle Scholar
  5. HANSEN, P., JAUMARD, B., and MLADENOVIC, M. (1995): How to choose K entities among N. In: DIMAC Series in Discrete Mathematics and Theoretical Computer Science, 19, 105–115.Google Scholar
  6. HUBERT, L.J. (1974): Spanning trees and aspects of clustering. British J. of Math. Statist. Psychol., 27, 14–28.zbMATHCrossRefGoogle Scholar
  7. KOHONEN, T. (1982): Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59–69.MathSciNetzbMATHCrossRefGoogle Scholar
  8. PERRIERE, G. and GOUY, M. (1996): WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie, 78, 364–369.CrossRefGoogle Scholar
  9. THIJS, G., MOREAU, Y., DE SMET, F., MATHYS, J., LESCOT, M., ROMBAUTS, S., ROUZE, P., DE MOOR, B., and MARCHAL, K. (2001): INCLUSive: INtegrated Clustering, Upstream sequence retrieval and motif Sampling. Bioinformatics, 2001, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alain Guénoche
    • 1
  • Henri Garreta
    • 2
  1. 1.Institut de Mathématiques de LuminyMarseille Cedex 9France
  2. 2.Laboratoire d’Informatique Fondamentale de MarseilleMarseille Cedex 9France

Personalised recommendations