Skip to main content

Advanced Simulation in the Configurable Massively Parallel Hardware MereGen

  • Conference paper
Coupling of Biological and Electronic Systems

Abstract

Simulation of biological molecular systems or studies on self- organization are most suitably studied in spatially extended environments. The study of evolutionary systems, be they optimization problems, chemical reactions or selfreferential systems, has a strong need for computational power. Configurable electronic hardware provides this power and has the additional advantage of restricting the modeling space to the essential minimum. Models working in silicon can be translated very easily into molecular or chemical systems. This poster reports on the successor of the reconfigurable massively parallel machine NGEN and the dynamic reconfigur- able evolvable hardware POLYP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breyer J. “Anwendung eines in der Hardware konfigurierbaren Parallelrechners auf die Simulation evolutiver in vitro Amplifikationssysteme” Uni Jena, Ph.D. thesis, 1998.

    Google Scholar 

  2. MicCaskill J. S., Chorongiewski H., Mekelburg K., Tangen U., Gemm U. NGEN-Configurable Computer Hardware to Simulate Long-Time Self-Organization of Biopolymers (Abstract) Physical Chemistry, 98:1114–1114, 1994.

    Google Scholar 

  3. McCaskill J. S., Maeke T., Gemm U., Schulte L., Tangen U. NGEN A Massively Parallel Reconfigurable Computer for Biological Simulation: towards a Self-Organizing Computer Lec. Note Corny. Sci, 1259:260–276, 1997.

    Article  Google Scholar 

  4. Tangen U., Schulte L., McCaskill J. S. A Parallel Hardware Evolvable Computer POLYP: Extended Abstract Proceedings of the FCCM’97 in IEEE Symposium, 1:238–239, 1997.

    Google Scholar 

  5. Compton J. Nucleic Acid Sequence-Based Amplification N, 350:91–92, 1991.

    CAS  Google Scholar 

  6. Romano J. W., Shurtliff R. N., Sarngadharan M. G., Pal R. Detection of HIV-1 infection in vitro using NASBA: an isothermal RNA amplification technique JVirMeth, 54:109–119, 1995.

    CAS  Google Scholar 

  7. Ehricht R., Ellinger T., McCaskill J. S. Cooperative Amplification of Templates by Cross-Hybridisation (CATCH) Eur. J. Biochem., 243:356–364, 1997.

    Article  Google Scholar 

  8. Breyer J., Ackermann J., Tangen U., McCaskill J. S. A Flow-Processor for Massive Parallel Simulation of Evolution in Biopolymer Reaction-Amplification Systems: PAD 1996 Preprint.

    Google Scholar 

  9. Breyer J., Ackermann J., Tangen U., McCaskill J. S. Modeling the Evolution in Cooperatively Coupled in vitro Amplification Systems ECAL’97, Poster, 1997.

    Google Scholar 

  10. Hoand D. T., Lopresti D. P. FPGA Implementation of Systolic Sequence Alignement In Grünbacher H., Hartenstein R. W., editors, Second Intern. Workshop on FPL and Appl., pages 183–191 Springer-Verlag, Berlin, Vienna, 1992.

    Google Scholar 

  11. McCaskill J. S. How is Genetic Information Generated? In Andersson S. I., Andersson A. E., Ottoson U., editors, Theory and Control of Dynamical Systems, pages 1–28 World Scientific Press, London, Huddinge, Stockholm, 1991.

    Google Scholar 

  12. McCaskill J. S. Spatially Resolved in vitro Molecular Ecology Biophys. Chem., 66:145–158, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. McCaskill J. S., Niemann U. Molecular Graph Reaction Networks Lec. Note Comp. Sci, 2000 In press.

    Google Scholar 

  14. Füchslin R., McCaskill J. S. Evolutionary Self Organization of Cell-Free Genetic Coding Proc. Natl. Acad. Sci. USA, 1:-, 2000 Submitted.

    Google Scholar 

  15. McCaskill J. S., Tangen U., Ackermann J. VLSE: Very Large Scale Evolution in Hardware. In Husbands P., Harvey I., editors, Proceedings of ECAL’97, pages 398–406 The MIT Press, Cambridge Massachusetts, 1997.

    Google Scholar 

  16. Tangen U., McCaskill J. S. Hardware Evolution with a Massively Parallel Dynamically Reconfigurable Computer: POLYP In Sipper M., Mange D., Perez-Uribe A., editors, ICES’ 98 Evolvable Systems: From Biology to Hardware, Vol. 1478, pages 364–371 Springer, Heidelberg, 1998.

    Chapter  Google Scholar 

  17. Tangen U. Self-Organisation in Micro-Configurable Hardware In Bedau M., McCaskill J. S., Packard N. H., Rasmussen S., editors, Artificial Life VII, pages 31–38 The MIT Press, Cambridge, Massachusetts, 2000.

    Google Scholar 

  18. Xilinx Virtex™-E 1.8V Field Programmable Gate Arrays, DS022 Xilinx Corporation, 2000.

    Google Scholar 

  19. Berger B., Leighton T. Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-Complete J. Comp. Biol., 5:27–40, 1998.

    Article  CAS  Google Scholar 

  20. Winfree E., Yang X., Seeman N. C. Universal Computation via Self-assembly of DNA: Some Theory and Experiments In Proceedings of the Second Annual Meeting on DNA Based Computers, pages-1996.

    Google Scholar 

  21. Jermutus L., Ryabova L. A., Plückthun A. Recent Advances in Producing and Selecting Functional Proteins by Using Cell-Free Translation Curr. Oppin. Biotech., 9:534–548, 1998.

    Article  CAS  Google Scholar 

  22. Stroh I. “Der Zukunft einen Schritt näher” In “Markt und Technik”, Vol. 4, pages 3–3 “WEKA Fachzeitschriften-Verlag GmbH”, 2001.

    Google Scholar 

  23. Wolfram S. Statistical mechanics of cellular automata Rev. Mod. Phys., 55:601–643, 1983.

    Article  Google Scholar 

  24. Wolfram S. Random Sequence Generation by Cellular Automata Adv. in Appl. Math., 7:123–169, 1986.

    Article  Google Scholar 

  25. Hillis W. D. Co-Evolving Parasites Improve Simulated Evolution as an Optimization Procedure In Langton C. G., Taylor C., D. Farmer J., S. Rasmüssen, editors, Artificial Life II, pages 313–324 Addison-Wesley, Reading, Massachusetts, 1991.

    Google Scholar 

  26. Vespalcova Z. Spatiotemporal Behavior of a Simple-Model of Self-Replicative Systems J. Physiology, 467:P200–P200, 1993.

    Google Scholar 

  27. Sipper M., Ruppin E. Co-evolving Architectures for Cellular Machines Physica D, 99:428–441, 1997.

    Article  Google Scholar 

  28. Chou H.-H., Reggia J. A. Problem Solving During Artificial Selection of Self-Replicating Loops Physica D, 115:293–312, 1998.

    Article  Google Scholar 

  29. de Garis H., Korkin M., Gers F., Nawa N. E., Hough M. ”Building an Artificial Brain Using an FPGA based CAM-Brain Machine Appl. Math. Corny., 111:163–192, 2000.

    Google Scholar 

  30. Hameroff S. R., Dayhoff J. E., Lahoz-Beltra R., Smasonovich A. V., Rasmussen S. Conformational Automata in the Cytoskeleton 11:30–39, 1992.

    Google Scholar 

  31. Mathis H. P., Kalusche G., Wagner B., McCaskill J. S. “Steps towards spatially resolved single molecule detection in solution” Bioimaging, 5:116–128, 1997.

    Article  CAS  Google Scholar 

  32. Harvey I., Thompson A. Through the Labyrinth Evolution Finds a Way: A Silicon Ridge Lect. Not. Comp. Sci., 1259:406–422, 1996.

    Article  Google Scholar 

  33. Thompson A. An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics Lect. Not. Comp. Sci., 1259:390–405, 1996.

    Article  Google Scholar 

  34. Koza J. R., Bennett III F. H., Hutchings J. L., Bade S. L, Keane M. A., Andre D. Rapidly Reconfigurable Field-Programmable Gate Arrays for Accelerating Fitness Evaluation in Genetic Programming In Koza J. R., editor, Late Breaking Papers at the Genetic Programming 1997 Conference, pages 121–131 Stanford University Bookstore, Stanford CA, 1997.

    Google Scholar 

  35. Adleman J. “Molecular Computation of Solutions to Combinatorial Problems” Science, 266:1021–1224, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. McCaskill J. S. Optically Programming DNA Computing in Microflow Reactors Biosystems, 2000 In press.

    Google Scholar 

  37. Smithers T. “Autonomy in Robots and other Agents” Brain Cogn., 34:88–106, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Klaassen B., Paap K. L. GMD-SNAKE2: A Snake-like Robot Driven by Wheels and a Method for Motion Control In “IEEE, Inter. Conf. on Robotics and Automation”, pages 3014–3019 “IEEE Robotics and Automation Society”, 1999.

    Google Scholar 

  39. Cruse H., Dean J., Kindermann T., Schmitz J., Schumm M. Simulation of complex movements using artificial neural networks Z. Naturwissenschaften, 53:628–638, 1998.

    CAS  Google Scholar 

  40. Pfeifer R. “Teaching powerful ideas with autonomous mobile robots” J. of Comp. Sci. Education, 7:161–186, 1997.

    Article  Google Scholar 

  41. Hoang D. T. Searching Genetic Databases on Splash 2 In Proceedings, IEEE Workshop on FPGAs for Custom Computing Machines, pages 185–1992 IEEE, 1993.

    Google Scholar 

  42. Görz G. Strukturanalyse Natürlicher Sprache Addison-Wesley, Bonn, 1988.

    Google Scholar 

  43. Ravani M., Derighetti B., Broggi G., Brun E. Dimension Analysis of a Chaotic Nuclear Magnetic Resonance Laser J. Opt. Soc. Amer., 5:1029–1035, 1988.

    Article  CAS  Google Scholar 

  44. Arnold J. M. The Splash 2 Software Environment In Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages 88–93 IEEE, Napa, CA, 1993.

    Chapter  Google Scholar 

  45. Rachakonda R. V., Athanas P. M., Abbott A. L. High-Speed Region Detection and Labeling Using an FPGA-based Custom Computing Platform 1995.

    Google Scholar 

  46. Wagner T., Schramm U., Boebel F. G. Synergetic Learning for Unsupervised Texture Classification Tasks Physica D, 80:140–150, 1995.

    Article  Google Scholar 

  47. Tanaka M., Sakanashi H., Salami M., Iwata M., Kurita T., Higuchi T. Data Compression for Digital Color Electrophotographic Printer with Evolvable Hardware In Sipper M., Mange D., Perez-Uribe A., editors, ICES’ 98 Evolvable Systems: From Biology to Hardware, Vol. 1478, pages 106–114 Springer, Heidelberg, 1998.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tangen, U., Maeke, T., McCaskill, J.S. (2002). Advanced Simulation in the Configurable Massively Parallel Hardware MereGen. In: Hoffmann, KH. (eds) Coupling of Biological and Electronic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56177-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56177-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62851-1

  • Online ISBN: 978-3-642-56177-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics