Skip to main content

Competition and Coexistence in Plankton Communities

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 161))

Abstract

Planktonic protozoa (ciliates of the genus Paramecium) were the first test organisms by which the competitive exclusion principle could be demonstrated (Gause 1934). Plankton (now phytoplankton) again served as model organisms when Hutchinson (1961) made the ecological community aware of the apparent contradiction between the competitive exclusion principle and the number of coexisting species (“the paradox of the plankton”; the theoretical foundations are explained in Chap. 2, this Vol.). This article turned out to be extremely fruitful in generating discussion in ecology and developing models to solve the paradox of the plankton became a major challenge. The most influential of these attempts was Tilman’s (1977) theory of resource competition, which again used phytoplankton (the freshwater diatoms Asterionella formosa and Cyclotella meneghiniana) for its first experimental test. During the following decades, plankton still played an important role as experimental model organisms in the analysis of competition and coexistence. Within plankton there was a strong bias towards phytoplankton, bacterioplankton ranking second and zooplankton third. The popularity of plankton had several reasons, some of them are more technical, and one reason is more fundamental.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 115:151–170

    Article  Google Scholar 

  • Beck K (2000) Experimentelle Überpriifung der “Intermediate Disturbance Hypothesis” (Connell 1978) and Modell-Lebensgemeinschaften planktischer Bakterienisolate. PhD Thesis, University of Kiel, Germany

    Google Scholar 

  • Beisner BE (2001) Plankton community structure in fluctuating environments and the role of productivity. Oikos 95:496–510

    Article  Google Scholar 

  • Chorus I, Schlag G (1993) Importance of intermediate disturbances for the species composition and diversity of phytoplankton in two very different Berlin lakes. Hydrobiologia 249:67–92

    Article  Google Scholar 

  • Connell J (1978) Diversity in tropical rainforests and coral reefs. Science 199:1304–1310

    Article  Google Scholar 

  • Currie DJ, Kalff J (1984) The relative importance of bacterioplankton versus phytoplankton in phosphorous uptake in freshwater. Limnol Oceanogr 29:311–312

    Article  CAS  Google Scholar 

  • DeMott WR (1986) The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340

    Article  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33:397–408

    Article  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272

    CAS  Google Scholar 

  • Droop MR (1983) 25 years of algal growth kinetics. Bot Mar 26:99–112

    Article  Google Scholar 

  • Ducobu H, Huisman J, Jonker RR, Mur LR (1998) Competition between a prochlorophyte and a cyanobacterium under various phosphorous regimes: comparison with the Droop model. J Phycol 34:467–476

    Article  Google Scholar 

  • Elser JJ, Hassett PR (1994) A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370:211–213

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751

    Article  Google Scholar 

  • Fenchel T, Esteban GB, Finlay BJ (1997) Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80:220–225

    Article  Google Scholar 

  • Föder S, Sommer U (1999) Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol Oceanogr 44:1114–1119

    Article  Google Scholar 

  • Gaedeke A, Sommer U (1986) The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71:25–28

    Article  Google Scholar 

  • Gause GJ (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Geller W, Muller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implication on food selectivity. Oecologia 49:316–321

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grover JP (1988) Dynamics of competition in a variable environment: experiments with two diatom species. Ecology 69:408–417

    Article  Google Scholar 

  • Grover JP (1991a) Algae grown in non-steady continuous cultures: population dynamics and phosphorous uptake. Verh Int Verein Limnol 24:2661–2664

    CAS  Google Scholar 

  • Grover JP (1991b) Resource competition in a variable environment: phytoplankton growing according to the variable internal stores model. Am Nat 138:811–835

    Article  Google Scholar 

  • Grover JP (2000) Resource competition and community structure in aquatic microcosms: experimental studies of algae and bacteria along a gradient of organic carbon to inorganic phosphorous supply. J Plankton Res 22:1591–1610

    Article  CAS  Google Scholar 

  • Holm NP, Armstrong DE (1981) Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr 26:622–634

    Article  CAS  Google Scholar 

  • Hillebrand H, Watermann F, Karez R, Berninger UG (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114–124

    Article  Google Scholar 

  • Huisman J (1999) Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80:202–210

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Huisman J, Jonker RR, Zonnefeld C, Weissing FJ (1999) Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80:211–222

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–147

    Article  Google Scholar 

  • Kilham SS (1984) Silicon and phosphorous growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verh Int Verein Limnol 22:435-439

    Google Scholar 

  • Kilham SS (1986) Dynamics of Lake Michigan natural phytoplankton communities in continuous cultures along a Si:P loading gradient. Can J Fish Aquat Sci 43:351–360

    Article  CAS  Google Scholar 

  • Lampert W (1987) Feeding and nutrition in Daphnia. Mem Ist Ital Idrobiol 45:143–192

    Google Scholar 

  • Lehman JT (1976) The filter feeder as an optimal forager, and the predicted shape of feeding curves. Limnol Oceanogr 21:501–516

    Article  Google Scholar 

  • Leibold MA (1996) A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat 147:784–812

    Article  Google Scholar 

  • Litchman E, Klausmeier CA (2001) Competition of phytoplankton under fluctuating light. Am Nat 157:170–187

    Article  PubMed  CAS  Google Scholar 

  • Lund JWG, Reynolds CS (1982) The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Prog Phycol Res 1:1–65

    CAS  Google Scholar 

  • Monod (1950) La technique de la culture continue: theorie et applications. Ann Inst Pasteur Lille 79:390–410

    CAS  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trend Ecol Evol 13:261–265

    Article  CAS  Google Scholar 

  • Olsen Y, Østgaard K (1985) Estimating release rate of phosphorous from zooplankton: model and experimental verification. Limnol Oceanogr 30:844–852

    Article  CAS  Google Scholar 

  • Padisak J (1991) Relative frequency, seasonal pattern and possible role of species rare in the phytoplankton (Lake Balaton, Hungary). Verh Int Verein Limnol 24:989–992

    Google Scholar 

  • Padisak J, Reynolds CS, Sommer U (1993) Intermediate disturbance hypothesis in phytoplankton ecology. Hydrobiologia 1993:1–199

    Google Scholar 

  • Picket STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York

    Google Scholar 

  • Radach G (1998) Quantification of long-term changes in the German Bight using an ecological development index. ICES J Mar Sci 55:587–599

    Article  Google Scholar 

  • Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3:141–159

    Google Scholar 

  • Reynolds CS (1987) The response of phytoplankton communities to changing lake environments. Schweiz Z Hydrol 49:220–236

    Article  Google Scholar 

  • Reynolds CS, Wiseman SW, Godfrey BM, Butterwick C (1983) Some effects of artificial mixing on the dynamics of phytoplankton in large limnetic enclosures. J Plankton Res 5:203–234

    Article  Google Scholar 

  • Reynolds CS, Padisak J, Sommer U (1993) Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249:183–188

    Article  Google Scholar 

  • Robinson JV, Sandgren CD (1983) The effect of temporal environmental heterogeneity on community structure: a replicated experimental study. Oecologia 57:98–102

    Article  Google Scholar 

  • Rothhaupt KO (1988) Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333:660–662

    Article  Google Scholar 

  • Rothhaupt KO, Güde H (1992) The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: Further evidence and possible causes. Limnol Oceanogr 37:739–749

    Article  CAS  Google Scholar 

  • Sandgren CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 9–104

    Google Scholar 

  • Smayda RT (1980) Phytoplankton species succession. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 353–414

    Google Scholar 

  • Smith RE, Kalff J (1983) Competition for phosphorous among co-occurring freshwater phytoplankton. Limnol Oceanogr 28:448–464

    Article  CAS  Google Scholar 

  • Sommer U (1983) Nutrient competition between phytoplankton in multispecies chemostat experiments. Arch Hydrobiol 96:399–416

    Google Scholar 

  • Sommer U (1984) The paradox of the plankton: fluctuations of phosphorous availability maintain diversity in flow-through cultures. Limnol Oceanogr 29:633–636

    Article  Google Scholar 

  • Sommer U (1985) Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30:335–346

    Article  CAS  Google Scholar 

  • Sommer U (1986a) Phytoplankton competition along a gradient of dilution rates. Oecologia 68:503–506

    Article  Google Scholar 

  • Sommer U (1986b) Nitrate-and silicate-competition among Antarctic phytoplankton. Mar Biol 91:345–351

    Article  CAS  Google Scholar 

  • Sommer U (1987) Factors controlling seasonal variation in phytoplankton species composition-a case study for a deep, nutrient rich lake. Prog Phycol Res 2:123–178

    Google Scholar 

  • Sommer U (1988) Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol Oceanogr 33:1037–1054

    Article  Google Scholar 

  • Sommer U (1989) The role of competition for resources in phytoplankton species succession. In: Sommer U (ed) Plankton ecology-succession in plankton communities. Springer, Berlin Heidelberg New York, pp 57–106

    Google Scholar 

  • Sommer U (1991a) The application of the Droop-model of nutrient limitation to natural phytoplankton. Verh Int Verein Limnol 24:791–794

    CAS  Google Scholar 

  • Sommer U (1991b) Phytoplankton: succession and forced cycels. In: Remmert H (ed) The mosaic cycle concept of ecosystems. Ecological studies, vol 85. Springer, Berlin Heidelberg New York, pp 132–147

    Chapter  Google Scholar 

  • Sommer U (1993) Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249:59–65

    Article  Google Scholar 

  • Sommer U (1994a) The impact of light intensity and day length on silicate and nitrate competition among marine phytoplankton. Limnol Oceanogr 39:1680–1688

    Article  Google Scholar 

  • Sommer U (1994b) Planktologie. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Sommer U (1995) An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnol Oceanogr 40:1271–1277

    Article  Google Scholar 

  • Sommer U (1996) Plankton ecology: the past two decades of progress. Naturwissenschaften 83:293–301

    Article  CAS  Google Scholar 

  • Sommer U (1998) From algal competition to animal production: enhanced ecological efficiency of Brachionus plicatilis with a mixed diet. Limnol Oceanogr 43:1393–1396

    Article  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Spijkerman E, Coesel P (1996) Competition for phosphorus between planktonic desmid species in continuous flow culture. J Phycol 32:939–948

    Article  Google Scholar 

  • Sterner RW (1990) The ratio of nitrogen to phosphorous resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 150:663–684

    Article  Google Scholar 

  • Thingstad F, Pengerud B (1985) Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory. Mar Ecol Prog Ser 21:47–62

    Article  Google Scholar 

  • Tilman D (1977) Resource competition and between planktonic algae: an experimental and theoretical approach. Ecology 58:338–348

    Article  CAS  Google Scholar 

  • Tilman D (1981) Test of resource competition theory using four species of Lake Michigan algae. Ecology 62:802–815

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Sterner RW (1984) Invasions of equilibria: tests of resource competition using two species of algae. Oecologia 61:197–200

    Article  Google Scholar 

  • Tilman D, Mattson M, Langer S (1981) Competition and nutrient kinetics along a temperature gradient: an experimental test of mechanistic approach to niche theory. Limnol Oceanogr 26:1020–1033

    Article  Google Scholar 

  • Tilman D, Kiesling R, Sterner R, Kilham SS, Johnsen FA (1986) Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorous, silicon, and nitrogen. Arch Hydrobiol 106:473–485

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (2002). Competition and Coexistence in Plankton Communities. In: Competition and Coexistence. Ecological Studies, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56166-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56166-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62800-9

  • Online ISBN: 978-3-642-56166-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics