Skip to main content

Spatial Models of Competition

  • Chapter
Book cover Competition and Coexistence

Part of the book series: Ecological Studies ((ECOLSTUD,volume 161))

Abstract

Traditional models of competition usually assume well-mixed populations, neglecting the localized nature of interactions between organisms and their environment. Because each individual organism affects mostly its local neighborhood, organisms create spatial heterogeneity in the environment; because organisms respond to their local neighborhoods, this biotically generated heterogeneity provides opportunities for novel ecological strategies and multispecies coexistence. Abiotically generated heterogeneity can also foster coexistence on a small scale and may explain the distribution of species across geographic gradients. In this chapter we discuss how spatial aspects of competition can be captured in theoretical models and how they affect coexistence. Because spatial models of competition cover many disparate systems, we focus here on models of terrestrial plants and other sessile organisms, but we suspect many of the phenomena we discuss are more widely applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams PA (1996) Limits to the similarity of competitors under hierarchical lottery competition. Am Nat 148:211–219

    Article  Google Scholar 

  • Abrams PA (2001) Modeling the adaptive dynamics of traits involved in inter-and intra specific interactions: an assessment of three methods. Ecol Lett 4:166–175

    Article  Google Scholar 

  • Aguiar MR, Sala OE (1994) Competition, facilitation, seed distribution and the origin of patches in a Patagonian steppe. Oikos 70:26–34

    Article  Google Scholar 

  • Ali S, Cosner C (1995) Models for the effects of individual size and spatial scale on competition between species in heterogeneous environments. Math Biosci 127:45–76

    Article  PubMed  CAS  Google Scholar 

  • Allen EJ, Allen LJS, Gilliam X (1996) Dispersal and competition momdels for plants. J Math Biol 34:455–481

    Article  Google Scholar 

  • Armstrong RA (1976) Fugitive species: experiments with fungi and some theoretical considerations. Ecology 57:953–963

    Article  Google Scholar 

  • Bolker BM, Pacala SW (1997) Using moment equations to understand stochastically driven spatial patterns formation in ecological systems. Theor Popul Biol 52:179–197

    Article  PubMed  Google Scholar 

  • Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602

    Article  Google Scholar 

  • Bolker BM, Pacala SW, Levin SA (2000) Moment methods for ecological processes in continuous space. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge Univ Press, Cambridge, pp 388–411

    Chapter  Google Scholar 

  • Britton NF, Timm U (1993) Effects of competition and shading in planktonic communities. J Math Biol. 31:655–673

    Article  Google Scholar 

  • Brown JS, Vincent TL (1992) Organization of predator-prey communities as an evolutionary game. Evolution 46:1269–1283

    Article  Google Scholar 

  • Cantrell RS, Cosner C (1998) On the effects of spatial heterogeneity on the persistence of interacting species. J Math Biol. 37:103–145

    Article  Google Scholar 

  • Chesson P (1991) A need for niches? Trends Ecol Evol 6:26–28

    Article  PubMed  CAS  Google Scholar 

  • Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386–398

    Article  Google Scholar 

  • Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction diffusion model. J Math Biol 37:61–83

    Article  Google Scholar 

  • Durrett R (1999) Stochastic spatial models. SIAM Rev 41:677–718

    Article  Google Scholar 

  • Durrett R, Levin SA (1994a) Stochastic spatial models: a user”s guide to ecological applications. Philos Trans R S Lond B 343:329–350

    Article  Google Scholar 

  • Durrett R, Levin S (1994b) The importance of being discrete (and spatial). Th Popul Biol 46:363–394

    Article  Google Scholar 

  • Durrett R, Neuhauser C (1994) Particle systems and reaction diffusion equations. Ann Prob 22:289–333

    Article  Google Scholar 

  • Durrett R, Neuhauser C (1997) Coexistence results for some competition models. Ann Appl Prob 7:10–45

    Article  Google Scholar 

  • Durrett R, Schinazi R (1993) Asymptotic critical value for a competition model. Ann Appl Prob 3:1047–1066

    Article  Google Scholar 

  • Durrett R, Swindle G (1991) Are there bushes in a forest? Stoch Proc Appl 37:19–31

    Google Scholar 

  • Ellner SP, Sasaki A (1998) Speed of invasion in lattice population models: pair-edge approximation. J Math Biol 36:469–484

    Article  Google Scholar 

  • Gandhi A, Levin S, Orszag S (1998) “Critical slowing down” in time-to-extinction: an example of critical phenomena in ecology. J Theor Biol 192:363–376

    Article  PubMed  CAS  Google Scholar 

  • Geritz SAH (1995) Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. Am Nat 146:685–707

    Article  Google Scholar 

  • Geritz SAH, Metz JAJ, Kisdi É, Meszéna G (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Geritz SAH, van der Meijden E, Metz JAJ (1999) Evolutionary dynamics of seed size and seedling competitive ability. Theor Popul Biol 55:324–343

    Article  PubMed  CAS  Google Scholar 

  • Grover JP (1997) Resource competition. Chapman and Hall, London

    Book  Google Scholar 

  • Gyllenberg M, Hanski I, Hastings A (1997) Structured metapopulation models. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, New York, pp 93–122

    Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, New York

    Google Scholar 

  • Harada Y (1999) Short-vs.long-range disperser: the evolutionary stable allocation in a lattice-structured habitat. J Theor Biol 201:171–187

    Article  PubMed  Google Scholar 

  • Harada Y, Iwasa Y (1994) Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res Popul Ecol 36:237–249

    Article  Google Scholar 

  • Hastings A (1980) Disturbance, coexistence, history, and competition for space. Th Popul Biol 18:363–373

    Article  Google Scholar 

  • Hastings A, Wolin CL (1989) Within-patch dynamics in a metapopulation. Ecology 70:1261–1266

    Article  Google Scholar 

  • Holmes EE, Wilson HB (1998) Running from trouble: long-distance dispersal and the competitive coexistence of inferior species. Am Nat 151:578–586

    Article  PubMed  CAS  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: Spatial interactions and population dynamics. Ecology 75:17–29

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton Univ Press, Princeton

    Google Scholar 

  • Huisman J, Weissing FJ (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75:507–520

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1995) Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat 146:536–564

    Article  Google Scholar 

  • Hurtt GC, Pacala SW (1995) The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. J Theor Biol 176:1–12

    Article  Google Scholar 

  • Huston MA, DeAngelis DL (1994) Competition and coexistence: the effects of resource transport and supply rates. Am Nat 144:954–977

    Article  Google Scholar 

  • Hutchinson GE (1951) Copepodology for the ornithologist. Ecology 32:571–577

    Article  Google Scholar 

  • Iwasa Y (2000) Lattice models and pair approximation in ecology. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge Univ Press, Cambridge, pp 227–251

    Chapter  Google Scholar 

  • Johnson MP (2000) Temporally explicit habitat ecology and the coexistence of species. Proc R Soc Lond B 267:1967–1972

    Article  CAS  Google Scholar 

  • Kinzig AP, Levin SA, Dushoff J, Pacala S (1999) Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. Am Nat 153:371–383

    Article  Google Scholar 

  • Klausmeier CA (1998) Extinction in multispecies and spatially explicit models of habitat destruction. Am Nat 152:303–310

    Article  PubMed  CAS  Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  PubMed  CAS  Google Scholar 

  • Klausmeier CA (2001) Habitat destruction and extinction in competitive and mutualistic metacommunities. Ecol Lett 4:57–63

    Article  Google Scholar 

  • Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007

    Article  Google Scholar 

  • Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80:109–136

    Article  Google Scholar 

  • Law R, Dieckmann U (2000) A dynamical system for neighborhoods in plant communities. Ecology 81:2137–2148

    Google Scholar 

  • Lehman CL, Tilman D (1997) Competition in spatial habitats. In: Tilman D, Kareiva P (eds) Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton Univ Press, Princeton, pp 185–203

    Google Scholar 

  • Levin S (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levin SA, Segel LA (1976) Hypothesis for the origin of planktonic patchiness. Nature 259:659

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Sec Am 15:237–240

    Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Nat Acad Sci USA 68:1246-1248

    Google Scholar 

  • Litchman E, Klausmeier CA (2001) Competition of phytoplankton under fluctuating light. Am Nat 157:170–187

    Article  PubMed  CAS  Google Scholar 

  • May RM, Nowak MA (1994) Superinfection, metapopulation dynamics, and the evolution of diversity. J Theor Biol 170:95–114

    Article  PubMed  CAS  Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mimura M, Ei SI, Fang Q (1991) Effect of domain-shape on coexistence problems in a competition-diffusion system. J Math Biol 29:219–237

    Article  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nee S, May RM (1992) Dynamics of metapopulations: habitat destruction and competitive coexistence. J Anim Ecol 61:37–40

    Article  Google Scholar 

  • Neubert M, Kot M, Lewis MA (1995) Dispersal and pattern formation in a discrete-time predator-prey model. Theor Popul Biol 48:7–43

    Article  Google Scholar 

  • Neuhauser C (1992) Ergodic theorems for the multi-type contact process. Prob Theory Related Fields 91:467–506

    Article  Google Scholar 

  • Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Okubo A, Maini PK, Williamson MH, Murray JD (1989) On the spatial spread of the grey squirrel in Britain. Proc R Soc Lond B 238:113–129

    Article  PubMed  CAS  Google Scholar 

  • Pacala SW (1986a) Neighborhood models of plant population dynamics. II. Multispecies models of annuals. Theor Popul Biol 29:262–292

    Article  Google Scholar 

  • Pacala SW (1986b) Neighborhood models of plant population dynamics. IV, Singlespecies and multispecies models of annuals with dormant seeds. Am Nat 128:859–878

    Article  Google Scholar 

  • Pacala SW (1987) Neighborhood models of plant population dynamics. III. Models with spatial heterogeneity in the physical environment. Th Popul Biol 31:359–392

    Article  Google Scholar 

  • Pacala SW, Levin SA (1997) Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P (eds) Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton Univ Press, Princeton, pp 204–232

    Google Scholar 

  • Pacala SW, Rees M (1998) Models suggesting field experiments to test two hypotheses explaining successional diversity. Am Nat 152:729–737

    Article  PubMed  CAS  Google Scholar 

  • Pacala SW, Roughgarden J (1982) Spatial heterogeneity and interspecific competition. Th Popul Biol 21:92–113

    Article  Google Scholar 

  • Pacala SW, Silander JA Jr (1985) Neighborhood models of plant population dynamics. I. Single-species models of annuals. Am Nat 125:385–411

    Article  Google Scholar 

  • Pacala SW, Silander JA Jr (1990) Field tests of neighborhood population dynamic models of two annual weed species. Ecol Monogr 60:113–134

    Article  Google Scholar 

  • Pacala SW, Tilman D (1994) Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am Nat 143:222–257

    Article  Google Scholar 

  • Pacala SW, Canham CD, Silander JA Jr (1993) Forest models defined by field measurements: I. The design of a northeastern forest simulator. Can J For Res 23:1980–1988

    Article  Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander JA Jr, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: II. Estimation, error analysis and dynamics. Ecol Monogr 66:1–43

    Article  Google Scholar 

  • Reynolds HL, Pacala SW (1993) An analytical treatment of root-to-shoot ratio and plant competition for soil nutrient and light. Am Nat 141:51–70

    Article  PubMed  CAS  Google Scholar 

  • SaW K, Iwasa Y (2000) Pair approximations for lattice-based ecological model. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge Univ Press, Cambridge, pp 341–358

    Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford Univ Press, Oxford

    Google Scholar 

  • Shorrocks B (1990) Coexistence in a patchy environment. In Shorrocks B, Swingland IR (eds) Living in a patchy environment. Oxford Univ Press, Oxford, pp 91–106

    Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics: the ecological implications of forest succession models. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    PubMed  CAS  Google Scholar 

  • Slatkin M (1974) Competition and regional coexistence. Ecology 55:128–134

    Article  Google Scholar 

  • Swindle G (1990) A mean field limit of the contact process with large range. Prob Theory Related Fields 85:261–282

    Article  Google Scholar 

  • Taneyhill DE (2000) Metapopulation dynamics of multiple species: the geometry of competition in a fragmented habitat. Ecol Monogr 70:495–516

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D (1990) Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15

    Article  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Vincent TLS, Vincent TL (1996) Using the ESS maximum principle to explore root-shoot allocation, competition and coexistence. J Theor Biol 180:111–120

    Article  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klausmeier, C.A., Tilman, D. (2002). Spatial Models of Competition. In: Competition and Coexistence. Ecological Studies, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56166-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56166-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62800-9

  • Online ISBN: 978-3-642-56166-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics