Advertisement

Ein neuer Angiogenese-Inhibitor (DBP-maf) inhibiert die Endothelzell-Biologie und das Tumorwachstum im Maus-Model

  • Oliver Kisker
  • C. Becker
  • S. Onizuka
  • S. Pirie-Shepherd
  • I. Celik
  • J. Folkman
Conference paper
Part of the Deutsche Gesellschaft für Chirurgie book series (DTGESCHIR, volume 31)

Abstract

Background: Tumor growth is dependent upon the balance of positive and negative regulators of angiogenesis. At least three antiangiogenic molecules have been previously isolated from conditioned media of tumors where these tumors have shown antiangiogenic potential in a mouse model. Methods and Results: BxPc-3 conditioned media (containing 5% fetal calf serum) was applied to a heparin Sepharose column and eluted with a 0.5 M NaCl steps. Fractions that inhibited capillary endothelial cell proliferation were further purified using Q-Sepharose and monoQ anion exchange chromatography. The inhibitory activity was associated with a protein of 53 kD. Sequence analysis revealed identity to Vitamin D binding protein (DBP). Purified DBP itself had no significant effect on endothelial cell proliferation. Therefore we tested the ability of serum free conditioned media from BxPC3 cells to process DBP by incubating DBP in conditioned media. The converted DBP specifically inhibited endothelial proliferation and was able to stimulate macrophages. Vitamin D binding protein-macrophage activating factor (DBP-maf) was able to suppress tumor growth in a dose dependent manner significantly. Immunhistological analysis showed a significantly reduced micovessel density and a elevated apoptotic rate and an unchanged proliferation rate. Conclusions: Human pancreatic cancer cell line express enzymatic activity which converts DPB to DBP-maf. This molecule inhibits endothelial cell biology in vitro and angiogenesis in vivo and is therefore a new candidate for antiangiogenic tumor therapy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Judah Folkman. (2001) Angiogensis. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL, (Hrsg) Harrison’s Textbook of Internal Medicine, 15th Edition, McGraw-Hill; S. 517-530Google Scholar
  2. 2.
    Kisker O, Onizuka S, Banyard J, Komiyama T, Becker CM, Achilles EG, Barnes CM, O’Reilly MS, Folkman J, Pirie-Shepherd SR (2001) Generation of multiple angiogenesis inhibitors by human pancreatic cancer, Cancer Research 61: 7298-304PubMedGoogle Scholar
  3. 3.
    Yamamoto N, Kumashiro R (1993) Conversion of vitamin D3 binding protein (group-specifíc component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J Immunol 151: 2794-802PubMedGoogle Scholar
  4. 4.
    Yamamoto N, Naraparaju VR (1997) Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor. Cancer Res 57: 2187-92PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Oliver Kisker
    • 1
    • 2
    • 4
  • C. Becker
    • 2
  • S. Onizuka
    • 2
  • S. Pirie-Shepherd
    • 2
  • I. Celik
    • 3
  • J. Folkman
    • 2
  1. 1.Klinik für Visceral-, Thorax und GefäßchirurgiePhilipp-Universität MarburgGermany
  2. 2.Surgical Research Laboratories, Children’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Institut für Theoretische ChirurgiePhilipp-Universität MarburgGermany
  4. 4.Klinik für Visceral-, Thorax und Gefäßchirurgie derPhilipps-Universität MarburgMarburgGermany

Personalised recommendations