Skip to main content

Spatial prediction of climate, soil, and macrofauna

Geomorphological and topoclimatic predictors derived from a DEM

  • Chapter
Spatial Modelling in Forest Ecology and Management

Abstract

Geomorphometric variables have been used for decades for several objectives, e.g. the prediction of soil loss determined by slope, or colluvial erosion and accumulation caused by type and degree of curvature particularly in agriculture (Seiler 1982). Another field of application is geotechnique, e.g. the estimation of landslide susceptibility, depending on so-called form elements of certain plan and profile curvature and slope gradients (Dikau 1990). Gardner et al. 1990 describe the rapid increase in the possibilities of DEM analysis; today, e.g. even complex hydrological features such as stream orders can be calculated very fast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blennow K, Persson P (1998) Modelling local-scale frost variations using mobile temperature measurements with a GIS. Agricultural and Forest Meteorology 89:59–71

    Article  Google Scholar 

  • Bluthgen J, Weischet W (1980) Allgemeine Klimageographie. Lehrbuch der Allgemeinen Geographie. De Gruyter, Berlin

    Google Scholar 

  • Burrough PA, McDonnel R (1998) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Dikau R (1990) Derivatives from detailed geoscientific maps using computer methods. Z Geomorph NF Suppl 80:45–55

    Google Scholar 

  • Dozier J, Frew J (1990) Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing 28:963–969

    Article  Google Scholar 

  • Eimern J van, Häckel H (1984) Wetter-und Klimakunde. 4th ed, Ulmer, Stuttgart

    Google Scholar 

  • ESRI (1991a) Surface modeling with tin. (Arc/Info User’ s Guide 6.0). Environmental Systems Research Institute, Redlands CA, USA

    Google Scholar 

  • ESRI (1991b) Cell based modeling with grid. (Arc/Info User’s Guide 6.0). Environmental Systems Research Institute, Redlands CA, USA

    Google Scholar 

  • ESRI (1995) Arc/Info version 7. Online user’ s guide. Environmental Systems Research Institute, Redlands CA, USA

    Google Scholar 

  • Evans IS (1980) An integrated system of terrain analysis and slope mapping. Z Geomorph NF Suppl 36:274–295

    Google Scholar 

  • Flemming G (1990) Klima-Umwelt-Mensch. VEB Gustav Fischer, Jena

    Google Scholar 

  • Gardener TW, Connors K, Sasowsky,Day RL (1990) Automated extraction of geomorphometric properties from digital elevation data. Z Geomorph NF Suppl 80:57–68

    Google Scholar 

  • Geiger R, Aron RA, Todhunter P (1995) The climate near the ground. Vieweg, Braunschweig

    Google Scholar 

  • Häckel H (1990) Meteorologie. 2nd ed, Ulmer, Stuttgart

    Google Scholar 

  • Köthe R, Lehmeier F (1993) SARA-Ein System zur automatischen Reliefanalyse. Standort 17:11–21

    Google Scholar 

  • Leser H (1980) Die Wölbung in der geomorphologischen Karte. Kartogr. Nachrichten, 30:11–24

    Google Scholar 

  • Liedtke H (1988) Untersuchungen zur Geomorphologie der Bundesrepublik Deutschland-Neue Ergebnisse der geomorphologischen Kartierung. Berliner Geogr Abh 47

    Google Scholar 

  • Nogami M (1995) Geomorphometric measures for digital elevation models. Z Geomorph NF 101:53–67

    Google Scholar 

  • Olseth JA, Skartveit A (1997) Spatial distribution of photosynthetically active radiation over complex topography. Agricultural and Forest Meteorology 86:205–214

    Article  Google Scholar 

  • Schulz G (1991) Lexikon zur Bestimmung der Geländeform in Karten. Berliner Geogr Studien 28. Berlin

    Google Scholar 

  • Seemann J, Chirkov YI, Lomas J, Primault B (1979) Agrometeorology. Springer, Berlin

    Google Scholar 

  • Seiler W (1982) Erosionsanfälligkeit und Erosionschädigung verschiedener Geländeeinheiten in Abhängigkeit von Nutzung, Niederschlagsart und Bodenfeuchte. Z Geomorph NF 43:81–102

    Google Scholar 

  • Weischet W (1991) Einführung in die allgemeine Klimatologie: Physikalische und meteorologische Grundlagen. Teubner, Stuttgart

    Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12:47–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, R., Mues, V., Jansen, M., Judas, M., Saborowski, J. (2002). Spatial prediction of climate, soil, and macrofauna. In: Jansen, M., Judas, M., Saborowski, J. (eds) Spatial Modelling in Forest Ecology and Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56155-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56155-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43357-6

  • Online ISBN: 978-3-642-56155-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics