Skip to main content

InP/GaInP Quantum Dot Lasers

  • Chapter
Nano-Optoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 660 Accesses

Abstract

Over the last decade self-assembled semiconductor quantum dots have become a major issue in semiconductor physics [13] — both from a fundamental point of view as well as in respect to applications such as the quantum dot laser. Originally, the quantum dot laser was proposed to outperform the well-established quantum well laser on the basis of properties such as material gain [4], differential gain [4], temperature stability [5] and threshold current density [4, which directly results from the zero-dimensional density of states of quantum dots. By now several predicted superior properties have indeed been successfully demonstrated [6, 7]. However, the main breakthroughs were not caused by any physical virtues, but occurred on the basis of technological inventions. Huffaker et al., for example, demonstrated 1.3 µm emission of a quantum dot laser grown on a GaAs (001) substrate [8]. This emission wavelength is impossible to reach with conventional InGaAs/GaAs quantum wells on a GaAs substrate. As a consequence InAs/GaAs quantum dots are highly attractive for the use in both edge emitting devices (see also Sect. 13.4) as well as vertical cavity surface emitting lasers (VCSELs) [9] (see also Sect. 13.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum Dot Heterostructures (Wiley, Chichester 1999)

    Google Scholar 

  2. H. Shoji: ‘Self-Assembled Quantum Dot Lasers’. In: Semiconductors and Semimetals, ed. by R.K. Willardson, E. Weber, Vol. 60 (Self-Assembled In-GaAs/GaAs Quantum Dots), ed. by M. Sugawara (Academic Press, New York 1999)

    Google Scholar 

  3. P.M. Petroff, A. Lorke, A. Imamoglu: Physics Today 54, 46 (2001)

    Article  ADS  Google Scholar 

  4. M. Asada, Y. Miyamoto, Y. Suematsu: IEEE J. Quant. Electr. QE-22, 1915 (1986)

    Article  ADS  Google Scholar 

  5. Y. Arakawa, H. Sakaki: Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  6. N. Kirstaedter, O. G. Schmidt, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, M.V. Maximov, P.S. Kop’ev, Zh.I. Alferov: Appl. Phys. Lett. 69, 1226 (1996)

    Article  ADS  Google Scholar 

  7. G. Park, O.B. Shchekin, D.L. Huffaker, D.G. Deppe: IEEE Photonics Techn. Lett. 13, 230 (2000)

    Article  ADS  Google Scholar 

  8. D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe: Appl. Phys. Lett. 73, 2564 (1998)

    Article  ADS  Google Scholar 

  9. J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg: Electr. Lett. 26, 1384 (2000)

    Article  Google Scholar 

  10. K. Eberl: Phys. World 10, 47 (1997)

    Google Scholar 

  11. S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, S. Char-bonneau: Science 274, 1350 (1996)

    Article  ADS  Google Scholar 

  12. S. Tanaka, H. Hirayama, Y. Aoyagi, Y. Narukawa, Y. Kawakami, S. Fujita: Appl. Phys. Lett. 71, 1299 (1997)

    Article  ADS  Google Scholar 

  13. K. Tachibana, T. Someya, Y. Arakawa, R. Werner, A. Forchel: Appl. Phys. Lett. 75, 2605 (1999)

    Article  ADS  Google Scholar 

  14. A. Kurtenbach, K. Eberl, T. Shitara: Appl. Phys. Lett. 66, 361 (1995)

    Article  ADS  Google Scholar 

  15. J. Ahopelto, A.A. Yamaguchi, K. Nishi, A. Usui, H. Sakaki: Jpn. J. Appl. Phys. 32, L32 (1993)

    Article  ADS  Google Scholar 

  16. N. Carlsoon, W. Seifert, A. Petersson, P. Castrillo, M.E. Pistol, L. Samuelson:  Appl. Phys. Lett. 65, 3093 (1994)

    Article  ADS  Google Scholar 

  17. B. Junno, T. Junno, M.S. Miller, L. Samuelson: Appl. Phys. Lett. 72, 954 (1998)

    Article  ADS  Google Scholar 

  18. K. Georgsson, N. Carlsson, L. Samuelson, W. Seifert, L.R. Wallenberg: Appl. Phys. Lett. 67, 2981 (1995)

    Article  ADS  Google Scholar 

  19. N. Carlsson, K. Georgsson, L. Montelius, L. Samuelson, W. Seifert, R. Wallenberg: J. Cryst. Growth 156, 23 (1995)

    Article  ADS  Google Scholar 

  20. Q.K. Liu, N. Moll, M. Scheffler, E. Pehlke: Phys. Rev. B 60, 17008 (1999)

    Article  ADS  Google Scholar 

  21. P. Ballet, J.B. Smathers, H. Yang, CL. Workman, G.J. Salamo: Appl. Phys. Lett. 77, 3406 (2000)

    Article  ADS  Google Scholar 

  22. Y.M. Manz, O.G. Schmidt, K. Eberl: Appl. Phys. Lett. 76, 3343 (2000)

    Article  ADS  Google Scholar 

  23. N.Y. Jin-Phillipp, F. Phillipp: J. Appl. Phys. 88, 710 (2000)

    Article  ADS  Google Scholar 

  24. Y. Zhang, A. Mascarenhas: Phys. Rev. B 57, 12245 (1998)

    Article  ADS  Google Scholar 

  25. T. Mattila, L. Beilaiche, L.-W. Wang, A. Zunger: Appl. Phys. Lett. 72, 2144 (1998)

    Article  ADS  Google Scholar 

  26. A. Mascarenhas, S. Kurtz, A. Kibbler, J.M. Olson: Phys. Rev. Lett. 63, 2108 (1989)

    Article  ADS  Google Scholar 

  27. H.-W. Ren, M. Sigisaki, S. Sugou, K. Nishi, A. Gomyo, Y. Masumoto: Jpn. J. Appl. Phys. 38, 2438 (1999)

    Article  ADS  Google Scholar 

  28. G. Guttroff, M. Bayer, A. Forchel, D.V. Kazantsev, M.K. Zundel, K. Eberl: phys. stat. sol. (a) 164, 291 (1997)

    Article  ADS  Google Scholar 

  29. G. Guttroff, M. Bayer, A. Forchel, D.V. Kazantsev, M.K. Zundel, K. Eberl: JETP Lett. 66, 529 (1997)

    Article  ADS  Google Scholar 

  30. O.G. Schmidt, N. Kirstaedter, N.N. Ledentsov, M.-H. Mao, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, M.V. Maximov, P.S. Kop’ev, Zh.I. Alferov: Electr. Lett. 32, 1302 (1996)

    Article  Google Scholar 

  31. M.K. Zundel, P. Specht, K. Eberl, N.Y. Jin-Phillipp, F. Phillipp: Appl. Phys. Lett. 71, 2972 (1997)

    Article  ADS  Google Scholar 

  32. O.G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, F. Ernst: Appl. Phys. Lett. 74, 1272 (1999)

    Article  ADS  Google Scholar 

  33. M. Hayne, R. Provoost, M.K. Zundel, Y.M. Manz, K. Eberl, V.V. Moshchalkov: Phys. Rev. B 62, 10324 (2000)

    Article  ADS  Google Scholar 

  34. M. Hayne, J. Maes, V.V. Moshchalkov, Y.M. Manz, O.G. Schmidt, K. Eberl: Appl. Phys. Lett. 79, 45 (2001)

    Article  ADS  Google Scholar 

  35. A. Moritz, R. Wirth, A. Hangleiter, A. Kurtenbach, K. Eberl: Appl. Phys. Lett. 69, 212 (1996)

    Article  ADS  Google Scholar 

  36. M.K. Zundel, N.Y. Jin-Phillipp, F. Phillipp, K. Eberl, T. Riedl, E. Fehrenbacher, A. Hangleiter: Appl. Phys. Lett. 73, 1784 (1998)

    Article  ADS  Google Scholar 

  37. T. Riedl, E. Fehrenbacher, A. Hangleiter, M. K. Zundel, K. Eberl: Appl. Phys. Lett. 73, 3730 (1998)

    Article  ADS  Google Scholar 

  38. T. Riedl, E. Fehrenbacher, M.K. Zundel, K. Eberl, A. Hangleiter: Jpn. J. Appl. Phys. 38, 597 (1999)

    Article  ADS  Google Scholar 

  39. K. Eberl, M. Lipinski, Y. Manz, N.Y. Jin-Phillipp, W. Winter, O.G. Schmidt: Thin Solid Films 380, 183 (2000)

    Article  ADS  Google Scholar 

  40. O.G. Schmidt, M. O. Lipinski, Y.M. Manz, K. Eberl: Proc. 25th Int. Conf. Phys. Semicond., ed. by N. Miura, T. Ando (Springer, Berlin 2001) p. 367

    Chapter  Google Scholar 

  41. J. Porsche, M. Ost, T. Riedl, A. Hangleiter, F. Scholz: Mat. Sci. Eng. B 74, 263 (2000)

    Article  Google Scholar 

  42. J. Porsche, M. Ost, F. Scholz, A. Fantini, F. Phillipp, T. Riedl, A. Hangleiter: IEEE J. Select. Topics Quant. Electr. 6, 482 (2000)

    Article  Google Scholar 

  43. J.H. Ryou, R.D. Dupuis, G. Walter, D.A. Kellogg, N. Holonyak, D.T. Mathes, R. Hull, C.V. Reddy, V. Narayanamurti: Appl. Phys. Lett. 78, 4091 (2001)

    Article  ADS  Google Scholar 

  44. K. Hinzer, J. Lapointe, Y. Feng, A. Delage, S. Fafard, A.J. Springthorpe, E.M. Griswold: J. Appl. Phys. 87, 1496 (2000)

    Article  ADS  Google Scholar 

  45. A. Patané, A. Polimeni, M. Henini, L. Eaves, P.C. Main, G. Hill: Appl. Phys. Lett. 85, 625 (1999)

    Google Scholar 

  46. H. Jiang, J. Singh: J. Appl. Phys. 85, 7438 (1999)

    Article  ADS  Google Scholar 

  47. Z. Zou, O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe: IEEE Photon. Technol. Lett. 10, 1673 (1998)

    Article  ADS  Google Scholar 

  48. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, H. Ishikawa: Appl. Phys. Lett. 71, 193 (1997)

    Article  ADS  Google Scholar 

  49. A. Kurtenbach, K. Eberl, K. Brunner, G. Abstreiter: ‘Self-assembling InP/Ino.48Gao.52P quantum dots grown by MBE’. In: Nanostructures Prepared by Selective Epitaxy or Regrowth on Patterned Substrates, NATO ASI Series E, Vol 298, ed. by K. Eberl, P.M. Petroff, P. Demeester (Kluver, Dordrecht 1995) pp. 59–67

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, O.G., Manz, Y.M., Eberl, K. (2002). InP/GaInP Quantum Dot Lasers. In: Grundmann, M. (eds) Nano-Optoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56149-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56149-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62807-8

  • Online ISBN: 978-3-642-56149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics