Skip to main content

Domain Decomposition Methods for Time-Harmonic Maxwell Equations: Numerical Results

  • Conference paper
Recent Developments in Domain Decomposition Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 23))

Abstract

We present a series of numerical results illustrating the performance of some non-overlapping domain decomposition algorithms for time-harmonic Maxwell equations in different physical situations. For the full-Maxwell equations with damping we consider the well-known Dirichlet/Neumann and Neumann/Neumann methods. Numerical evidence will show that both schemes are convergent with a rate independent of the mesh size. For the low-frequency model in a conductor, we consider again the Dirichlet/Neumann and the Neumann/Neumann algorithms. Both methods turn out to be efficient and robust. Finally, for the eddy-current problem, we implement an iterative procedure coupling a scalar problem in the insulator and a vector problem in the conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, (1999) A mathematical justification of the low-frequency heterogeneous time-harmonic Maxwell equations. Math. Models Methods Appl. Sci. 9, 475–489

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso, A. and Valli, A. (1997) A domain decomposition approach for heterogeneous time-harmonic Maxwell equation. Comput. Meth. Appl. Mech. Engrg. 143, 97–112

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso, A. and Valli, A. (1999) An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68, 607–631

    Article  MathSciNet  MATH  Google Scholar 

  4. Alonso, A. and Valli, A. (to appear) Domain decomposition algorithms for time-harmonic Maxwell equations with damping. Math. Model. Num. Anal.

    Google Scholar 

  5. Ammari, H., Buffa, A. and Nédélec, J.C. (2000) A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossavit, A. (1998) Computational Electromagnetism. Academic Press, San Diego 1998

    MATH  Google Scholar 

  7. Nédélec, J.C. (1980) Mixed finite elements in ℝ3, Numer. Math. 35, 315–341

    Article  MathSciNet  MATH  Google Scholar 

  8. Nédélec, J.C. (1986) A new family of mixed finite elements in ℝ3, Numer. Math. 50, 57–81

    Article  MathSciNet  MATH  Google Scholar 

  9. Quarteroni, A. and Valli, A. (1999) Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez, A.A., Valli, A. (2002). Domain Decomposition Methods for Time-Harmonic Maxwell Equations: Numerical Results. In: Pavarino, L.F., Toselli, A. (eds) Recent Developments in Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56118-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56118-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43413-9

  • Online ISBN: 978-3-642-56118-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics