Skip to main content

Biosafety Issues in Lentivector Production

  • Chapter
Lentiviral Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 261))

Abstract

The development of efficient lentivectors brings about exciting possibilities for novel therapeutic interventions. Still, as new biologicals intended to be used in the clinic, these vectors will have to comply with a complete set of requirements regarding their mode of preparation and characterization. Over the past 50 years, there has been an increasing awareness of the safety issues surrounding the manufacturing of medicinal products. Regulatory authorities and agencies regularly publish guidelines and coordinate international conferences on harmonization (ICH), whose goal is to define common standards for biotechnological and biological products to be administered to human patients (SCHULTZ 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins B, Hunter T (1981) Identification of a packaged cellular mRNA in virions of rous sarcoma virus. J Virol 39:471–480

    PubMed  CAS  Google Scholar 

  • Aiken C (1997) Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 71:5871–5877

    PubMed  CAS  Google Scholar 

  • Andreadis S, Palsson BO (1997) Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Hum Gene Ther 8:285–291

    Article  PubMed  CAS  Google Scholar 

  • Aronoff R, Linial M (1991) Specificity of retroviral RNA packaging. J Virol 65:71–80

    PubMed  CAS  Google Scholar 

  • Arthur LO, Bess JW Jr, Sowder RCd, Benveniste RE, Mann DL, Chermann JC, Henderson LE (1992) Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines [see comments]. Science 258:1935–1938

    Article  PubMed  CAS  Google Scholar 

  • Berglund JA, Charpentier B, Rosbash M (1997) A high affinity binding site for the HIV-1 nucleocapsid protein. Nucleic Acids Res 25:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, van Wamel J, Klaver B (1995) Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J Mol Biol 252:59–69

    Article  PubMed  CAS  Google Scholar 

  • Bess JW Jr, Gorelick RJ, Bosche WJ, Henderson LE, Arthur LO (1997) Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 230:134–144

    Article  PubMed  CAS  Google Scholar 

  • Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    PubMed  CAS  Google Scholar 

  • Braaten D, Franke EK, Luban J (1996) Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol 70:4220–4227

    PubMed  CAS  Google Scholar 

  • Bukrinsky M, Adzhubei A (1999) Vial protein R of HIV-1. Rev Med Virol 9:39–49

    Article  PubMed  CAS  Google Scholar 

  • Callahan MA, Handley MA, Lee YH, Talbot KJ, Harper JW, Panganiban AT (1998) Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 72:8461

    PubMed  CAS  Google Scholar 

  • Cantin R, Fortin JF, Tremblay M (1996) The amount of host HLA-DR proteins acquired by HIV-1 is virus strain-and cell type-specific. Virology 218:372–381

    Article  PubMed  CAS  Google Scholar 

  • Capobianchi MR, Fais S, Castilletti C, Gentile M, Ameglio F, Dianzani F (1994) A simple and reliable method to detect cell membrane proteins on infectious human immunodeficiency virus type 1 particles. J Infect Dis 169:886–889

    Article  PubMed  CAS  Google Scholar 

  • Castilletti C, Capobianchi MR, Fais S, Abbate I, Ficociello B, Ameglio F, Cordiali Fei P, Santini SM, Dianzani F (1995) HIV type 1 grown on interferon gamma-treated U937 cells shows selective increase in virion-associated intercellular adhesion molecule 1 and HLA-DR and enhanced infectivity for CD4-negative cells. AIDS Res Hum Retroviruses 11:547–553

    Article  PubMed  CAS  Google Scholar 

  • Chang LJ, Urlacher V, Iwakuma T, Cui Y, Zucali J (1999) Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther 6:715–728

    Article  PubMed  CAS  Google Scholar 

  • Chinnasamy D, Chinnasamy N, Enriquez M, Otsu M, Morgan R, Candotti F (2000) Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96:1309–1316

    PubMed  CAS  Google Scholar 

  • Cimarelli A, Luban J (1999) Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein. J Virol 73:5388–5401

    PubMed  CAS  Google Scholar 

  • Clavel F, Chameau P (1994) Fusion from without directed by human immunodeficiency virus particles. J Virol 68:1179–1185

    PubMed  CAS  Google Scholar 

  • Clever JL, Taplitz RA, Lochrie MA, Polisky B, Parslow TG (2000) A heterologous, high-affinity RNA ligand for human immunodeficiency virus Gag protein has RNA packaging activity. J Virol 74: 541–546

    Article  PubMed  CAS  Google Scholar 

  • Cone R, Reilly E, Eisen H, Mulligan R (1987) Tissue-specific expression of functionally rearranged lamda 1 Ig gene through a retrovirus vector. Science 236:954–957

    Article  PubMed  CAS  Google Scholar 

  • Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 85:6460–6464

    Article  PubMed  CAS  Google Scholar 

  • Delviks K, Hu W, Pathak V (1997) Ψ-vectors: murine leukemia virus-based self-inactivating and self activating retroviral vectors. J Virol 71:6218–6224

    PubMed  CAS  Google Scholar 

  • Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Duisit G, Salvetti A, Moullier P, Cosset FL (1999) Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines. Hum Gene Ther 10:189–200

    Article  PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  • Frank I, Stoiber H, Godar S, Stockinger H, Steindl F, Katinger HW, Dierich MP (1996) Acquisition of host cell-surface-derived molecules by HIV-1. Aids 10:1611–1620

    Article  PubMed  CAS  Google Scholar 

  • Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 9:2717–2726

    Article  PubMed  CAS  Google Scholar 

  • Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST (1999) Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 73:1828–1834

    PubMed  CAS  Google Scholar 

  • Han JJ, Mhatre AN, Wareing M, Pettis R, Gao WQ, Zufferey RN, Trono D, Lalwani AK (1999) Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther 10:1867–1873

    Article  PubMed  CAS  Google Scholar 

  • Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P (1998) Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163–175

    Article  PubMed  CAS  Google Scholar 

  • Holzer GW, Mayrhofer JA, Gritschenberger W, Dorner F, Falkner FG (1999) Poxviral/retroviral chimeric vectors allow cytoplasmic production of transducing defective retroviral particles. Virology 253:107–114

    Article  PubMed  CAS  Google Scholar 

  • Hu WS, Temin HM (1990) Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA 87:1556–1560

    Article  PubMed  CAS  Google Scholar 

  • Ikawa Y, Ross J, Leder P (1974) An association between globin messenger RNA and 60S RNA derived from Friend leukemia virus. Proc Natl Acad Sci USA 71:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Iwakuma T, Cui Y, Chang LJ (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261:120–132

    Article  PubMed  CAS  Google Scholar 

  • Jacque JM, Mann A, Enslen H, Sharova N, Brichacek B, Davis RJ, Stevenson M (1998) Modulation of HIV-1 infectivity by MAPK, a virion-associated kinase. Embo J 17:2607–2618

    Article  PubMed  CAS  Google Scholar 

  • Johnston J, Power C (1999) Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development. J Virol 73:2491–2498

    PubMed  CAS  Google Scholar 

  • Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM (1999) A packaging cell line for lentivirus vectors. J Virol 73:576–584

    PubMed  CAS  Google Scholar 

  • Kaplan AH, Swanstrom R (1991) The HIV-1 gag precursor is processed via two pathways: implications for cytotoxicity. Biomed Biochim Acta 50:647–653

    PubMed  CAS  Google Scholar 

  • Kaul M, Yu H, Ron Y, Dougherty JP (1998) Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology 249:167–174

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72:811–816

    PubMed  CAS  Google Scholar 

  • Kimpton J, Emerman M (1992) Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 66:2232–2239

    PubMed  CAS  Google Scholar 

  • Klages N, Zufferey R, Trono D (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2:170–176

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Bloch J, Ma SY, Chu Y, Palfl S, Roitberg BZ, Emborg M, Hantraye P, Deglon N, Aebischer P (1999) Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 160:1–16

    Article  PubMed  CAS  Google Scholar 

  • Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA (2000) A Rev-independent human immunodeficiency virus type 1 (HlV-l)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74:4839–4852

    Article  PubMed  CAS  Google Scholar 

  • Lama J, Trono D (1998) Human immunodeficiency virus type 1 matrix protein interacts with cellular protein HO3. J Virol 72:1671–1676

    PubMed  CAS  Google Scholar 

  • Mangeot PE, NEgre D, Dubois B, Winter AJ, Leissner P, Mehtali M, Kaiserlian D, Cosset FL, Darlix JL (2000) Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 74:8307–8315

    Article  PubMed  CAS  Google Scholar 

  • Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH et al. (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590

    Article  PubMed  CAS  Google Scholar 

  • Mautino MR, Keiser N, Morgan RA (2000a) Improved titers of HIV-based lentiviral vectors using the SRV-1 constitutive transport element. Gene Ther 7:1421–1424

    Article  PubMed  CAS  Google Scholar 

  • Mautino MR, Ramsey WJ, Reiser J, Morgan RA (2000b) Modified human immunodeficiency virus-based lentiviral vectors display decreased sensitivity to trans-dominant Rev. Hum Gene Ther 11:895–908

    Article  PubMed  CAS  Google Scholar 

  • Metharom P, Takyar S, Xia HH, Ellem KA, Macmillan J, Shepherd RW, Wilcox GE, Wei MQ (2000) Novel bovine lentiviral vectors based on Jembrana disease virus. J Gene Med 2:176–185

    Article  PubMed  CAS  Google Scholar 

  • Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72:8873–8883

    PubMed  CAS  Google Scholar 

  • Mouland AJ, Mercier J, Luo M, Bernier L, DesGroseillers L, Cohen EA (2000) The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J Virol 74:5441–5451

    Article  PubMed  CAS  Google Scholar 

  • Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, Chettab K, Legras C, Ronfort C, Verdier G, Mornex JF, Chebloune Y (1998) Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol 143:681–695

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Ott DE, Coren LV, Copeland TD, Kane BP, Johnson DG, Sowder RC II, Yoshinaka Y, Oroszlan S, Arthur LO, Henderson LE (1998) Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 72:2962–2968

    PubMed  CAS  Google Scholar 

  • Ott DE, Coren LV, Kane BP, Busch LK, Johnson DG, Sowder RC II, Chertova EN, Arthur LO, Henderson LE (1996) Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol 70:7734–7743

    PubMed  CAS  Google Scholar 

  • Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64:5270–5276

    PubMed  CAS  Google Scholar 

  • Park F, Ohashi K, Chiu W, Naldini L, Kay MA (2000) Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat Genet 24:49–52

    Article  PubMed  CAS  Google Scholar 

  • Piguet V, Schwartz O, Le Gall S, Trono D (1999) The downregulation of CD4 and MHC-I by primate lentiviruses: a paradigm for the modulation of cell surface receptors. Immunol Rev 168: 51–63

    Article  PubMed  CAS  Google Scholar 

  • Poeschla E, Gilbert J, Li X, Huang S, Ho A, Wong-Staal F (1998a) Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J Virol 72:6527–6536

    PubMed  CAS  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ (1998b) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354–357

    Article  PubMed  CAS  Google Scholar 

  • Putkonen P, Walther L, Zhang YJ, Li SL, Nilsson C, Albert J, Biberfeld P, Thorstensson R, Biberfeld G (1995) Long-term protection against SIV-induced disease in macaques vaccinated with a live attenuated HIV-2 vaccine. Nat Med 1:914–918

    Article  PubMed  CAS  Google Scholar 

  • Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156

    PubMed  CAS  Google Scholar 

  • Reiser J (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther 7:910–913

    CAS  Google Scholar 

  • Rey O, Canon J, Krogstad P (1996) HIV-1 Gag protein associates with F-actin present in microfilaments. Virology 220:530–534

    Article  PubMed  CAS  Google Scholar 

  • Rolls M, Webster P, Balba N, Rose J (1994) Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell 79:497–506

    Article  PubMed  CAS  Google Scholar 

  • Russell DW, Miller AD (1996) Foamy virus vectors. J Virol 70:217–222

    PubMed  CAS  Google Scholar 

  • Saifuddin M, Parker CJ, Peeples ME, Gorny MK, Zolla-Pazner S, Ghassemi M, Rooney IA, Atkinson JP, Spear GT (1995) Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J Exp Med 182:501–509

    Article  PubMed  CAS  Google Scholar 

  • Saphire AC, Bobardt MD, Gallay PA (1999) Host cyclophilin A mediates HIV-1 attachment to target cells via heparans. Embo J 18:6771–6785

    Article  PubMed  CAS  Google Scholar 

  • Savard N, Cosset FL, Epstein AL (1997) Defective herpes simplex virus type 1 vectors harboring gag, pol, and env genes can be used to rescue defective retrovirus vectors. J Virol 71:4111–4117

    PubMed  CAS  Google Scholar 

  • Schnell T, Foley P, Wirth M, Munch J, Uberla K (2000) Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11:439–447

    Article  PubMed  CAS  Google Scholar 

  • Schultz WB (1998) International conference on harmonization; guidance on quality of biotechnological/ biological products: derivation and characterization of cell substrates used for production of biotechnological/biological products; availability. Fed Regist 63:50244–50249

    Google Scholar 

  • Srinivasakumar N, Schuening FG (1999) A lentivirus packaging system based on alternative RNA transport mechanisms to express helper and gene transfer vector RNAs and its use to study the requirement of accessory proteins for particle formation and gene delivery. J Virol 73:9589–9598

    PubMed  CAS  Google Scholar 

  • Stitz J, Buchholz CJ, Engelstadter M, Uckert W, Bloemer U, Schmitt I, Cichutek K (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273:16–20

    Article  PubMed  CAS  Google Scholar 

  • Swain A, Coffin JM (1992) Mechanism of transduction by retroviruses. Science 255:841–845

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73:7812–7816

    PubMed  CAS  Google Scholar 

  • Uphoff CC, Drexler HG (1999) Detection of mycoplasma contaminations in cell cultures by PCR analysis. Hum Cell 12:229–236

    PubMed  CAS  Google Scholar 

  • van der Laan L, Lockey C, Griffeth B, Frasier F, Wilson C, Onions D, Hering B, Long Z, Otto E, Torbett B, Salomon D (2000) Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 407:90–94

    Article  PubMed  Google Scholar 

  • Wagner R, Graf M, Bieler K, Wolf H, Grunwald T, Foley P, Uberla K (2000) Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 11: 2403–2413

    Article  PubMed  CAS  Google Scholar 

  • Wahlfors JJ, Xanthopoulos KG, Morgan RA (1997) Semliki Forest virus-mediated production of retroviral vector RNA in retroviral packaging cells. Hum Gene Ther 8:2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Ng T, Miller A (1997) Evaluation of recommandations for replication competent retrovirus testing associated with use of retroviral vectors. Hum Gene Ther 8:869–874

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Wakefleld JK, Liu H, Xiao H, Kralovics R, Prchal JT, Kappes JC (2000) Development of a novel trans-lentiviral vector that affords predictable safety. Mol Ther 2:47–55

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Bogerd H, Peng S, Wiegand H, Truant R, Cullen B (1999) An ancient family of human endogenous retro viruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 96:13404–13408

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Rabson AB, Kaul M, Ron Y, Dougherty JP (1996) Inducible human immunodeficiency virus type 1 packaging cell lines. J Virol 70:4530–7453

    PubMed  CAS  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Chameau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang QY, Clausen PA, Yatsula BA, Calothy G, Blair DG (1998) Mutation of polyadenylation signals generates murine retroviruses that produce fused virus-cell RNA transcripts at high frequency. Virology 241:80–93

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus post-transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73: 2886–2892

    PubMed  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delenda, C., Audit, M., Danos, O. (2002). Biosafety Issues in Lentivector Production. In: Trono, D. (eds) Lentiviral Vectors. Current Topics in Microbiology and Immunology, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56114-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56114-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62667-8

  • Online ISBN: 978-3-642-56114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics