Advertisement

Lentiviral Vectors for the Gene Therapy of Lympho-Hematological Disorders

  • P. Salmon
  • D. Trono
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 261)

Abstract

Perhaps no clinical field stands to gain more from gene therapy than that of lympho-hematological disorders. First, blood cells are the site of manifestation of a large number of well-characterized monogenic hereditary defects, the correction of which would eliminate all symptoms in affected individuals (Table 1). Second, adding a genetic component to currently used drug-based approaches could facilitate the control of several acquired diseases of the immuno-hematological system including leukemia and AIDS, and could be used to provide blood precursors with an increased resistance against the toxicity of chemotherapy used in cancer treatment. Third, most of the cellular components of this tissue are renewed throughout life and derived from a single progenitor, the so-called human hematopoietic stem cell (hHSC). Fourth, not only is this common precursor currently the best characterized of all stem cells, but it is also relatively easy to isolate, it can be manipulated ex vivo, and it can be reintroduced into the body with an efficacy high enough to reconstitute a functional organ. Finally, the recently discovered plasticity of stem cells, with hematopoietic progenitors capable of contributing to the regeneration of tissues such as muscle (FERRARI et al. 1998; GUSSONI et al. 1999) or liver (LAGASSE et al. 2000), indicates that gene therapy through the modification of hHSC may open truly vertiginous therapeutic perspectives extending well beyond the lympho-hematopoietic system.

Keywords

Long Terminal Repeat Chronic Granulomatous Disease Purine Nucleoside Phosphorylase Woodchuck Hepatitis Virus Human Hematopoietic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abonour R, Williams DA, Einhorn L, Hall KM, Chen J, Coffman J, Traycoff CM, Bank A, Kato I, Ward M, Williams SD, Hromas R, Robertson MJ, Smith FO, Woo D, Mills B, Srour EF, Cornetta K (2000) Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 6:652–658PubMedCrossRefGoogle Scholar
  2. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585PubMedGoogle Scholar
  3. An DS, Kung SK, Bonifacino A, Wersto RP, Metzger ME, Agricola BA, Mao SH, Chen IS, Donahue RE (2001) Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol 75:3547–3555PubMedCrossRefGoogle Scholar
  4. Barquinero J, Segovia JC, Ramirez M, Limon A, Guenechea G, Puig T, Briones J, Garcia J, Bueren JA (2000) Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 95:3085–3093PubMedGoogle Scholar
  5. Barrette S, Douglas J, Orlic D, Anderson SM, Seidel NE, Miller AD, Bodine DM (2000a) Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors. Mol Ther 1:330–338PubMedCrossRefGoogle Scholar
  6. Barrette S, Douglas JL, Seidel NE, Bodine DM (2000b) Lentivirus-based vectors transduce mouse hematopoietic stem cells with similar efficiency to Moloney murine leukemia virus-based vectors. Blood 96:3385–3391PubMedGoogle Scholar
  7. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808PubMedCrossRefGoogle Scholar
  8. Berkowitz R, lives H, Lin WY, Eckert K, Coward A, Tamaki S, Veres G, Plavec I (2001) Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol 75:3371–3382PubMedCrossRefGoogle Scholar
  9. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE (1997a) Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 186:619–624PubMedCrossRefGoogle Scholar
  10. Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE (1997b) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 94:5320–5325PubMedCrossRefGoogle Scholar
  11. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045PubMedCrossRefGoogle Scholar
  12. Bjorgvinsdottir H, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC (1997) Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 89:41–48PubMedGoogle Scholar
  13. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649PubMedGoogle Scholar
  14. Bradford GB, Williams B, Rossi R, Bertoncello I (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25:445–453PubMedGoogle Scholar
  15. Brugger W, Scheding S, Ziegler B, Buhring HJ, Kanz L (2000) Ex vivo manipulation of hematopoietic stem and progenitor cells. Semin Hematol 37:42–49PubMedCrossRefGoogle Scholar
  16. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037PubMedCrossRefGoogle Scholar
  17. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G, Haas DL, Xu D, Stripecke R, Naldini L, Kohn DB, Crooks GM (1999) Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 96:2988–2993PubMedCrossRefGoogle Scholar
  18. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease. Science 288:669–672PubMedCrossRefGoogle Scholar
  19. Chameau P, Mirambeau G, Roux P, Paulous S, Bue H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–662CrossRefGoogle Scholar
  20. Chen WY, Wu X, Levasseur DN, Liu H, Lai L, Kappes JC, Townes TM (2000) Lentiviral vector transduction of hematopoietic stem cells that mediate long-term reconstitution of lethally irradiated mice. Stem Cells 18:352–359PubMedCrossRefGoogle Scholar
  21. Chen WY, Townes TM (2000) Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc Natl Acad Sci USA 97:377–382PubMedCrossRefGoogle Scholar
  22. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436PubMedGoogle Scholar
  23. Dao MA, Nolta JA (1999) Immunodeficient mice as models of human hematopoietic stem cell engraftment. Curr Opin Immunol 11:532–537PubMedCrossRefGoogle Scholar
  24. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ, Dubensky TW Jr (2000) VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–222PubMedCrossRefGoogle Scholar
  25. Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72:5085–5092PubMedGoogle Scholar
  26. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE (2000) Expansion of human cord blood CD34(+)CD38(-) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 95:102–110PubMedGoogle Scholar
  27. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors, [published erratum appears in Science 1998 Aug 14; 281(5379):923] Science 279:1528–1530PubMedCrossRefGoogle Scholar
  28. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222PubMedCrossRefGoogle Scholar
  29. Gallardo HF, Tan C, Ory D, Sadelain M (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90:952–957PubMedGoogle Scholar
  30. Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 9:2717–2726PubMedCrossRefGoogle Scholar
  31. Glimm H, Kiem HP, Darovsky B, Storb R, Wolf J, Diehl V, Mertelsmann R, von Kalle C (1997) Efficient gene transfer in primitive CD34 + /CD3810 human bone marrow cells reselected after long-term exposure to GALV-pseudotyped retroviral vector. Hum Gene Ther 8:2079–2086PubMedCrossRefGoogle Scholar
  32. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345PubMedCrossRefGoogle Scholar
  33. Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16:166–177PubMedCrossRefGoogle Scholar
  34. Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M, Naldini L, Dick JE (2000) Transduction of human CD34+ CD38-bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 1:566–573PubMedCrossRefGoogle Scholar
  35. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  36. Haas DL, Case SS, Crooks GM, Kohn DB (2000) Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther 2:71–80PubMedCrossRefGoogle Scholar
  37. Halene S, Wang L, Cooper RM, Bockstoce DC, Robbins PB, Kohn DB (1999) Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 94:3349–3357PubMedGoogle Scholar
  38. Halene S, Kohn DB (2000) Gene therapy using hematopoietic stem cells: Sisyphus approaches the crest. Hum Gene Ther 11:1259–1267PubMedCrossRefGoogle Scholar
  39. Hamaguchi I, Woods NB, Panagopoulos I, Andersson E, Mikkola H, Fahlman C, Zufferey R, Carlsson L, Trono D, Karlsson S (2000) Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J Virol 74:10778–10784PubMedCrossRefGoogle Scholar
  40. Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Shultz LD, Keller G (1997) Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 90:85–96PubMedGoogle Scholar
  41. Ju Q, Edelstein D, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG, Brownlee M (1998) Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector. Diabetologia 41:736–739PubMedCrossRefGoogle Scholar
  42. Kafri T, Blömer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317PubMedCrossRefGoogle Scholar
  43. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodiumdependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075PubMedCrossRefGoogle Scholar
  44. Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF (2000) Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RDI 14) envelope protein. Blood 96:1206–1214PubMedGoogle Scholar
  45. Kim M, Cooper DD, Hayes SF, Spangrude GJ (1998) Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91: 4106–4117PubMedGoogle Scholar
  46. Klages N, Zufferey R, Trono D (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2:170–176PubMedCrossRefGoogle Scholar
  47. Klug CA, Cheshier S, Weissman IL (2000) Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood 96:894–901PubMedGoogle Scholar
  48. Kollet O, Aviram R, Chebath J, ben-Hur H, Nagler A, Shultz L, Revel M, Lapidot T (1999) The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34(+)CD38(-/low) cells capable of repopulating severe combined immunodeficiency mice. Blood 94:923–931PubMedGoogle Scholar
  49. Kurachi S, Deyashiki Y, Takeshita J, Kurachi K (1999) Genetic mechanisms of age regulation of human blood coagulation factor IX. Science 285:739–743PubMedCrossRefGoogle Scholar
  50. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo [In Process Citation]. Nat Med 6:1229–1234PubMedCrossRefGoogle Scholar
  51. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2:1329–1337PubMedCrossRefGoogle Scholar
  52. Lewis J (1998) Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 9:583–589PubMedCrossRefGoogle Scholar
  53. Lo M, Bloom ML, Imada K, Berg M, Bollenbacher JM, Bloom ET, Kelsall BL, Leonard WJ (1999) Restoration of lymphoid populations in a murine model of X-linked severe combined immunodeficiency by a gene-therapy approach. Blood 94:3027–3036PubMedGoogle Scholar
  54. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ, Li F, Miller JA, DeCarlo E, Holland SM, Leitman SF, Carter CS, Butz RE, Read EJ, Fleisher TA, Schneiderman RD, Van Epps DE, Spratt SK, Maack CA, Rokovich JA, Cohen LK, Gallin JI (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA 94:12133–12138PubMedCrossRefGoogle Scholar
  55. Mardiney Mill, Jackson SH, Spratt SK, Li F, Holland SM, Malech HL (1997) Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood 89:2268–2275PubMedGoogle Scholar
  56. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406:82–86PubMedCrossRefGoogle Scholar
  57. Mikkola H, Woods NB, Sjogren M, Helgadottir H, Hamaguchi I, Jacobsen SE, Trono D, Karlsson S (2000) Lentivirus gene transfer in murine hematopoietic progenitor cells is compromised by a delay in proviral integration and results in transduction mosaicism and heterogeneous gene expression in progeny cells. J Virol 74:11911–11918PubMedCrossRefGoogle Scholar
  58. Miller CL, Eaves CJ (1997) Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci USA 94:13648–13653PubMedCrossRefGoogle Scholar
  59. Miller DG, Edwards RH, Miller AD (1994) Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA 91:78–82PubMedCrossRefGoogle Scholar
  60. Milner LA, Bigas A, Kopan R, Brashem-Stein C, Bernstein ID, Martin DI (1996) Inhibition of granulocytic differentiation by mNotchl. Proc Natl Acad Sci USA 93:13014–13019PubMedCrossRefGoogle Scholar
  61. Milner LA, Bigas A (1999) Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 93:2431–2448PubMedGoogle Scholar
  62. Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323PubMedCrossRefGoogle Scholar
  63. Miyoshi H, Blömer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157PubMedGoogle Scholar
  64. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283:682–686PubMedCrossRefGoogle Scholar
  65. Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322PubMedCrossRefGoogle Scholar
  66. Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388PubMedCrossRefGoogle Scholar
  67. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRefGoogle Scholar
  68. Nibley WE, Spangrude GJ (1998) Primitive stem cells alone mediate rapid marrow recovery and multilineage engraftment after transplantation. Bone Marrow Transplant 21:345–354PubMedCrossRefGoogle Scholar
  69. Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919PubMedGoogle Scholar
  70. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F, Perissinotto E, Cavalloni G, Kollet O, Lapidot T, Aglietta M (1999) Engraftment in nonobese diabetic severe combined immunodeflcient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93:3736–3749PubMedGoogle Scholar
  71. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, Lee JY, Kadesch T, Hardy RR, Aster JC, Pear WS (1999) Notchl expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308PubMedCrossRefGoogle Scholar
  72. Ramezani A, Hawlay TS, Hawlay RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther, 1–12Google Scholar
  73. Rasko JE, Battini JL, Gottschalk RJ, Mazo I, Miller AD (1999) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA 96:2129–2134PubMedCrossRefGoogle Scholar
  74. Ratajczak MZ, Pletcher CH, Mariicz W, Machalinski B, Moore J, Wasik M, Ratajczak J, Gewirtz AM (1998) CD34 +, kit +, rhodaminel23(low) phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. Leukemia 12:942–950PubMedCrossRefGoogle Scholar
  75. Rivella S, Callegari JA, May C, Tan CW, Sadelain M (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 74:4679–4687PubMedCrossRefGoogle Scholar
  76. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G, Salmon P (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87: 483–492PubMedCrossRefGoogle Scholar
  77. Salmon P, Boyer O, Lores P, Jami J, Klatzmann D (1996) Characterization of an intronless CD4 minigene expressed in mature CD4 and CD8 T cells, but not expressed in immature thymocytes. J Immunol 156:1873–1879PubMedGoogle Scholar
  78. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D (2000a) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392–3398PubMedGoogle Scholar
  79. Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D (2000b) Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes [In Process Citation]. Mol Ther 2:404–414PubMedCrossRefGoogle Scholar
  80. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 18:1360–1377PubMedGoogle Scholar
  81. Spangrude GJ, Brooks DM, Tumas DB (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85:1006–1016PubMedGoogle Scholar
  82. Spangrude GJ, Cooper DD (2000) Paradigm shifts in stem-cell biology. Semin Hematol 37:3–10PubMedCrossRefGoogle Scholar
  83. Stitz J, Buchholz CJ, Engelstadter M, Uckert W, Bloemer U, Schmitt I, Cichutek K (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273:16–20PubMedCrossRefGoogle Scholar
  84. Sutton RE, Wu HT, Rigg R, Bohnlein E, Brown PO (1998) Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J Virol 72:5781–5788PubMedGoogle Scholar
  85. Sutton RE, Reitsma MJ, Uchida N, Brown PO (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73:3649–3660PubMedGoogle Scholar
  86. Tailor CS, Nouri A, Zhao Y, Takeuchi Y, Kabat D (1999) A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J Virol 73:4470–4474PubMedGoogle Scholar
  87. Uchida N, Sutton RE, Friera AM, He D, Reitsma MJ, Chang WC, Veres G, Scollay R, Weissman IL (1998) HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 95:11939–11944PubMedCrossRefGoogle Scholar
  88. Ueda T, Tsuji K, Yoshino H, Ebihara Y, Yagasaki H, Hisakawa H, Mitsui T, Manabe A, Tanaka R, Kobayashi K, Ito M, Yasukawa K, Nakahata T (2000) Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest 105:1013–1021PubMedCrossRefGoogle Scholar
  89. van Hennik PB, Verstegen MM, Bierhuizen MF, Limon A, Wognum AW, Cancelas JA, Barquinero J, Ploemacher RE, Wagemaker G (1998) Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeflcient mice. Blood 92:4013–4022PubMedGoogle Scholar
  90. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notchl signaling. Nat Med 6:1278–1281PubMedCrossRefGoogle Scholar
  91. von Kalle C, Glimm H, Schulz G, Mertelsmann R, Henschler R (1998) New developments in hematopoietic stem cell expansion. Curr Opin Hematol 5:79–86CrossRefGoogle Scholar
  92. Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D, Robey E (1997) Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88:833–843PubMedCrossRefGoogle Scholar
  93. Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446PubMedCrossRefGoogle Scholar
  94. Woffendin C, Yang ZY, Udaykumar, Xu L, Yang NS, Sheehy MJ, Nabel GJ (1994) Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Acad Sci USA 91:11581–11585PubMedCrossRefGoogle Scholar
  95. Woods N-B, Fahlman C, Mikkola H, Hamaguchi I, Olsson K, Zufferey R, Jacobsen SE, Karlsson S (2000) Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood (in press)Google Scholar
  96. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Chameau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185PubMedCrossRefGoogle Scholar
  97. Ziegler BL, Valtieri M, Porada GA, De Maria R, Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C (1999) KDR receptor: a key marker defining hematopoietic stem cells. Science 285:1553–1558PubMedCrossRefGoogle Scholar
  98. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875PubMedCrossRefGoogle Scholar
  99. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedGoogle Scholar
  100. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73: 2886–2892PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. Salmon
    • 1
  • D. Trono
    • 1
  1. 1.Department of Genetics and MicrobiologyFaculty of MedicineGenevaSwitzerland

Personalised recommendations