Skip to main content

Pathophysiology of Weaning-Associated Respiratory Failure

  • Conference paper
  • 306 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 36))

Abstract

Weaning of a small proportion of patients receiving mechanical ventilatory support from mechanical ventilation poses a challenge to the clinician in charge of their care. In general, the etiology of unsuccessful weaning is related to the incomplete resolution of the underlying illness that dictates the need for ventilatory support, the development of ventilator-associated complications, or new problems. The cause of weaning failure is multi-factorial (Jubran and Tobin 1997; Vassilakopoulos et al. 1998), and an isolated factor can rarely be defined. Regardless of the etiologies, the fundamental derangement underlying weaning-associated respiratory failure is a decrease in respiratory neuromuscular capacity (Table 9.1) and an excessive load to the respiratory system (Table 9.2), particularly the respiratory muscles (Tobin et al. 1998). The pattern of breathing in these patients is generally rapid and shallow (Jubran and Tobin 1997). The best method for determining the interplay among the factors involved in weaning failure is an experimental design, with the patients acting as their own control during both failed and successful trials. The two most recent studies which have met the above criterion (Vassilakopoulos et al. 1998, Capdevila et al. 1998) will be the basis of this review article.

Supported by the Department of Veterans Affairs Medical Research Service

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzueto A, Supinski GS, Levine SM, Jenkinson SG (1994) Mechanisms of disease: are oxygen-derived free radicals involved in diaphragmatic dysfunction? Am J Respir Crit Care Med 149:1048–1052

    PubMed  CAS  Google Scholar 

  • Anzueto A, Peters JI, Tobin MJ, De Los Santos R, Seidenfeld JJ, Moore G, Cox WJ, Coalson JJ (1997) Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons. Crit Care Med 25:1106–1107

    Article  Google Scholar 

  • Armstrong RB, Warren GL, Warren JA (1991) Mechanisms of exercise-induced muscle fiber injury. Sports Med 12:349–356

    Article  Google Scholar 

  • Aubier M, Farkas G, De Troyer A, Mozes R, Roussos C (1981) Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol 50:538–544

    PubMed  CAS  Google Scholar 

  • Bellemare F, Grassino A (1982) Effect of pressure and timing of contraction of human diaphragm fatigue. J Appl Physiol 53: 1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B (1984) Muscle fatigue and the influence of changing neural drive. Clin Chest Med 5:21–34

    PubMed  CAS  Google Scholar 

  • Bourdelles GL, Viires N, Boczkowski J, Seta N, Pavlovic D, Aubier M (1994) Effects of mechanical ventilation on diaphragmatic contractile properties in rats. Am J Respir Crit Care Med 149: 1539–1544

    PubMed  Google Scholar 

  • Capdevila X, Perrigault PF, Ramonatxo M, Roustan JP, Peray P, d’Athis F, Prefaut C (1998) Changes in breathing pattern and respiratory muscle performance parameters during difficult weaning. Crit Care Med 26:79–87

    Article  PubMed  CAS  Google Scholar 

  • Cohen CA, Zagelbaum G, Gross D, Roussos C, Macklem PT (1982) Clinical manifestations of inspiratory muscle fatigue. Am J Med 73:308–316

    Article  PubMed  CAS  Google Scholar 

  • De Troyer A, Leeper JB, McKenzie DK, Gandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med 155:1335–1340

    PubMed  Google Scholar 

  • Gandevia C, Leeper JB, McKenzie DK, De Troyer A (1996) Discharge frequencies of parasternal intercostal and scalene motor units during breathing in normal and COPD subjects. Am J Respir Grit Care Med 153: 622–628

    CAS  Google Scholar 

  • Grassino A, Comtois N, Galdiz HJ, Sinderby C (1994) The unweanable patient. Monaldi Arch Chest Dis 49:522–526

    PubMed  CAS  Google Scholar 

  • Jubran A, Tobin MJ (1997) Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 155:906–915

    PubMed  CAS  Google Scholar 

  • Laghi F, D’Alfonso N, Tobin MJ (1995) Pattern of recovery from diaphragm fatigue over 24 hours. J Appl Physiol 79:539–546

    PubMed  CAS  Google Scholar 

  • Laghi F, Topeli A, Tobin MJ (1998) Does resistive loading decrease diaphragmatic contractility before task failure? J Appl Physiol 85:1103–1112

    PubMed  CAS  Google Scholar 

  • Leijten FSS, Harinck-De Weerd JE, Poortvliet DCJ, De Weerd AW (1995) The role of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA 274: 1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Leijten FSS, De Weerd AW, Poortvliet DCJ, De Ridder VA, Ulrich C, Harinck-De Weerd JE (1996) Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med 22: 856–861

    Article  PubMed  CAS  Google Scholar 

  • NHLBI Workshop Summary (1990) Respiratory muscle fatigue: report of the respiratory muscle fatigue workshop group. Am Rev Respir Dis 142:474–480

    Google Scholar 

  • Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152:531–537

    PubMed  CAS  Google Scholar 

  • Ramonatxo M, Boulard P, Prefaut C (1995) Validation of a noninvasive tension-time index of inspiratory muscles. J Appl Physiol 78:646–653

    PubMed  CAS  Google Scholar 

  • Reid WD, Huang J, Bryson S, Walker DC, Belcastro AN (1994) Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol 76:176–184

    PubMed  CAS  Google Scholar 

  • Sander HW, Saadeh PB, Chandswang N, Greenbaum D, Chokroverty S (1999) Diaphragmatic denervation in intensive care unit patients. Electromyogr Clin Neurophysiol 39:3–5

    PubMed  CAS  Google Scholar 

  • Sassoon CSH, Yearn I, Gruer SE, Wuerker RB, Caiozzo VJ, Sieck GC. Effect of controlled mechanical ventilation on diaphragm contractile properties (1996) Am J Respir Crit Care Med 153:A372

    Google Scholar 

  • Tobin MJ, Laghi F, Jubran A (1998) Respiratory muscle dysfunction in mechanically ventilated patients. Mol Cell Biochem 179:87–98

    Article  PubMed  CAS  Google Scholar 

  • Vassilakopoulos T, Zakynthinos S, Roussos C (1998) The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med 158:378–85

    PubMed  CAS  Google Scholar 

  • Yang K, Tobin MJ (1991) A prospective study of predicting outcome of trials of weaning from mechanical ventilation. N Engl J Med 324: 1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Zhu E, Petrof BJ, Gea J, Comtois N, Grassino AE (1997) Diaphragm muscle fiber injury after inspiratory resistive breathing. Am J Respir Crit Care Med 155:1110–1116

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sassoon, C.S.H., Manka, A., Chetty, K.G. (2003). Pathophysiology of Weaning-Associated Respiratory Failure. In: Mancebo, J., Net, A., Brochard, L. (eds) Mechanical Ventilation and Weaning. Update in Intensive Care Medicine, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56112-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56112-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44181-6

  • Online ISBN: 978-3-642-56112-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics