Skip to main content

Application of Tracheal Gas Insufflation for Critical Care Patients

  • Conference paper
Mechanical Ventilation and Weaning

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 36))

  • 305 Accesses

Abstract

Lung-protective mechanical ventilatory strategies have been proposed for acute respiratory distress syndrome (ARDS) [1,2]. These strategies typically involve the use of small tidal volume to avoid high alveolar pressures at end-inspiration and alveolar overdistension, and the use of high positive end-expiratory pressure (PEEP) levels to keep alveoli open at end-expiration, thus maintaining alveolar recruitment. Such ventilatory strategies may involve a decrease in alveolar ventilation and a significant rise in PaCO2. This strategy has been called permissive hypercapnia. Mechanical ventilation strategies designed to protect the lungs from excessive stretch resulted in improvements in several important clinical outcomes in patients with acute lung injury and in patients with ARDS [3–5]. Unfortunately, CO2 retention must sometimes occur over brief intervals, which leads to unacceptably severe respiratory acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dreyfuss D, Saumon G 1998 ) Ventilator induced lung injury. Lessons from experimental studies. Am J Respir Grit Care Med 157: 294–323

    CAS  Google Scholar 

  2. International Consensus Conferences in Intensive Care Medicine (1999) Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160: 2118–2124

    Google Scholar 

  3. Amato MBP, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  CAS  Google Scholar 

  4. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volume as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Google Scholar 

  5. Ranieri VM, Suter P, Tortorella C, De Tulio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282: 54–61

    Article  PubMed  CAS  Google Scholar 

  6. Nahum A, Marini JJ, Slutsky AS (1998) Tracheal gas insufflation. In: Marini JJ, Slutsky AS (eds) Physiological basis of ventilatory support. Dekker, New York, pp 1021–1045

    Google Scholar 

  7. Stresemann E, Sattler FP (1969) Effect of washout of anatomic dead space on ventilation, pH and blood gas composition in anesthetized dogs. Respiration 26: 116–121

    Article  PubMed  CAS  Google Scholar 

  8. Stresemann E, Votteri BA, Sattler FP (1969) Washout of anatomical dead space for alveolar hypoventilation. Respiration 26: 425–434

    Article  Google Scholar 

  9. Ravenscraft SA, Burke WC, Nahum A, Adams AB, Nakos G, Marcy TW, Marini JJ (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345–351

    PubMed  CAS  Google Scholar 

  10. Nakos G, Zakinthinos S, Kotanidou A, Tsagaris H, Roussos C (1994) Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant. Intensive Care Med 20: 407–413

    Article  PubMed  CAS  Google Scholar 

  11. Saura P, Lucangelo, Blanch L, Artigas A, Mas A, Fernandez R (1996) Factores determinantes de la reduccion de la PaCO2 con la insuflacion de gas traqueal en pacientes con lesion pulmonar aguda. Med Intensiva 20: 246–251

    Google Scholar 

  12. Richecoeur J, Lu Q, Vieira SRR, Puybasset L, Kalfon P, Coriat P, Rouby JJ (1999) Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160: 77–85

    PubMed  CAS  Google Scholar 

  13. Ravenscraft SA (1996) Tracheal gas insufflation: adjunct to conventional mechanical ventilation. Respir Care 41: 105–111

    Google Scholar 

  14. Adams AB (1996) Tracheal gas insufflation. Respir Care 41: 285–292

    Google Scholar 

  15. Kirmse M, Fujino Y, Hromi J, Mang H, Hess D, Kacmarek RM (1999) Pressure-release tracheal gas insufflation reduces airway pressures in lung injured sheep maintaining eucapnia. Am J Respir Crit Care Med 160: 1462–1467

    PubMed  CAS  Google Scholar 

  16. Nahum A, Ravenscraft SA, Adams AB, Marini JJ (1995) Inspiratory tidal volume sparing effects of tracheal gas insufflation in dogs with oleic acid-induced lung injury. J Crit Care 10: 115–121

    Article  PubMed  CAS  Google Scholar 

  17. Imanaka HM, Kirmse M, Mang D, Hess D, Kacmarek RM (1999) Expiratory phase tracheal gas insufflation and pressure control ventilation in lung lavage sheep with permissive hypercapnia: effects of TGI flow direction and inspiratory time. Am a Respir Crit Care Med 159: 49–54

    CAS  Google Scholar 

  18. Slutsky A, Menon A (1987) Catheter position and blood gases during constant-flow ventilation. J Appl Physiol 62: 513–519

    Article  PubMed  CAS  Google Scholar 

  19. Imanaka H, Kacmarek RM, Riggi V, Ritz R, Hess D (1998) Expiratory phase and volume adjusted tracheal gas insufflation: a lung model study. Crit Care Med 26: 939–946

    Article  PubMed  CAS  Google Scholar 

  20. Gowski DT, Delgado E, Miro AM, Tasota FJ, Hoffman LA, Pinsky MR (1997) Tracheal gas insufflation during pressure control ventilation: effect of using a pressure relief valve. Crit Care Med 25: 145–152

    Article  PubMed  CAS  Google Scholar 

  21. Blanch L (2001) Clinical studies of tracheal gas insufflation. Respir Care 46: 158–166

    PubMed  CAS  Google Scholar 

  22. Dorne R, Liron L, Pommier C (2000) Insufflation tracheale de gaz associee a la ventilation mecanique pour l’epuration du CO2. Ann Fr Anesth Reanim 19: 115–127

    Article  PubMed  CAS  Google Scholar 

  23. De Robertis E, Sigurdur E, Sigurdsson E, Drefeldt B, Jonson B (1999) Aspiration of airway dead space. A new method to enhance CO2 elimination. Am J Respir Crit Care Med 159: 728–732

    PubMed  Google Scholar 

  24. De Robertis E, Servillo G, Jonson B, Tufano R (1999) Aspiration of dead space allows normocapnic ventilation at low tidal volumes in man. Intensive Care Ivied 25: 674–679

    Article  Google Scholar 

  25. De Robertis E, Servillo G, Tufano R, Jonson B (2000) Aspiration of dead space allows normocapnia at small tidal volumes and adequate PEEP in ARDS. Am J Respir Crit Care Med 161: A387

    Google Scholar 

  26. Boussignac G, Bertrand C, Huguenard P (1988) Etude preliminaire d’une nouvelle sonde d’intubation endotracheale. Cony Med 7: 111–113

    Google Scholar 

  27. Pinquier D, Pavlovic Boussignac G, Aubier M, Beaufils F (1996) Benefits of the low pressure multichannel endotracheal ventilation. Am J Respir Crit Care Med 154: 82–90

    PubMed  CAS  Google Scholar 

  28. Valles J (1999) Prevention of nosocomial pneumonia in patients with acute respiratory distress syndrome. In: Mancebo J, Blanch L (eds) Syndrome de detresse respiratoire aigue en reanimation. Elsevier, Amsterdam, pp 252–264

    Google Scholar 

  29. Kolobov T, Powers T, Mandava S, Aprigliano M, Kawaguchi A, Tsuno K, Mueller E (1994) Intratracheal pulmonary ventilation (ITPV): control of positive end-expiratory pressure at the level of the carina through the use of a novel ITPV catheter design. Anesth Analg 78: 455–461

    Google Scholar 

  30. Blanch L, Van der Kloot TE, Youngblood M, Murias G, Naveira A, Adams A, Shapiro R, Nahum A (1999) Selective tracheal gas insufflation ( TGI) improves lung function in unilateral lung injury. Am J Respir Crit Care Med 159: A366

    Google Scholar 

  31. Nahum A, Ravenscraft SA, Nakos G, Burke WC, Adams AB, Marcy TW, Marini JJ (1992) Tracheal gas insufflation during pressure-control ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411–1418

    PubMed  CAS  Google Scholar 

  32. Burke WC, Nahum A, Ravenscraft SA, Nakos G, Adams AB, Marcy TW, Marini JJ (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normals dogs. Am Rev Respir Dis 148: 562–568

    Article  PubMed  CAS  Google Scholar 

  33. Nahum A, Chandra A, Niknam J, Ravenscraft SA, Adams AB, Marini JJ (1995) Effect of tracheal gas insufflation on gas exchange in canine oleic acid-induced lung injury. Grit Care Med 23: 348–356

    Article  CAS  Google Scholar 

  34. Nahum A, Shapiro RS, Ravenscraft, SA, Adams AB, Marini JJ (1995) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Grit Care Med 152: 489–495

    CAS  Google Scholar 

  35. Nakos G, Lachana A, Prekates A, Pneumatikos J, Guillaume M, Pappas K, Tsagiris H (1995) Respiratory effects of tracheal gas insufflation in spontaneously breathing COPD patients. Intensive Care Med 21: 904–912

    Article  PubMed  CAS  Google Scholar 

  36. Bergofsky EH, Hurewitz AN (1989) Airway insufflation: physiologic effects on acute and chronic gas exchange in humans. Am Rev Respir Dis 140: 885–890

    PubMed  CAS  Google Scholar 

  37. Hurewitz AN, Bergofsky EH, Vomero E (1991) Airway insufflation. Increasing flow rates progressively reduce dead space in respiratory failure. Am Rev Respir Dis 144: 1229–1232

    PubMed  CAS  Google Scholar 

  38. Benditt J, Pollock M, Roa J, Celli B (1993) Transtracheal delivery of gas decreases the oxygen cost of breathing. Am Rev Respir Dis 147: 1207–1210

    PubMed  CAS  Google Scholar 

  39. Hoffman LA, Johnson JT, Wesmiller SW, et al (1991) Transtracheal delivery of oxygen: efficacy and safety for long-term continuous theraphy. Ann Otol Rhinol Laryngol 100: 108–115

    PubMed  CAS  Google Scholar 

  40. Wesmiller SW, Hoffman LA, Sciurba FC, et al (1990) Exercise tolerance during nasal cannula and transtracheal oxygen delivery. Am Rev Respir Dis 141: 789–791

    Article  PubMed  CAS  Google Scholar 

  41. Tobert DG, Simon PM, Stroetz RW, Hubmayr R (1997) The determinants of respiratory rate during mechanical ventilation. Am J Respir Crit Care Med 155: 485–492

    PubMed  CAS  Google Scholar 

  42. Georgopoulos D, Mitrouska I, Webster K, Bshouty Z, Younes M (1997) Effects of inspiratory muscle unloading on the response of respiratory motor output to CO2. Am J Respir Crit Care Med 155: 2000–2009

    PubMed  CAS  Google Scholar 

  43. Kalfon P, Umamaheswara GS, Gallart L, Puybasset L, Coriat P, Rouby JJ (1997) Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 87: 6–17

    Article  PubMed  CAS  Google Scholar 

  44. Kuo PH, Wu HD, Yu CJ, Yang SC, Lai YL, Yang PC (1996) Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 154: 612–616

    PubMed  CAS  Google Scholar 

  45. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on CO22 removal during tracheal gas insufflation in dogs. J Appl Physiol 75: 1238–1246

    PubMed  CAS  Google Scholar 

  46. Findlay GP, Dingley J, Smithies MN, Kalfon P, Rouby JJ (1998) Expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 88: 835–836

    Article  PubMed  CAS  Google Scholar 

  47. Pizov R, Oppenheim A, Eidelman LA, Weiss YG, Sprung CL, Cotev S (1998) Helium versus oxygen for tracheal gas insufflation during mechanical ventilation. Crit Care Med 26: 290–295

    Article  PubMed  CAS  Google Scholar 

  48. Jaber S, Fodil R, Carlucci A, Boussarsar M, Pigeot J, Lemaire F, Harf A, Lofaso F, Isabey D, Brochard L (2000) Noninvasive ventilation with helium-oxygen in acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161: 1191–1200

    PubMed  CAS  Google Scholar 

  49. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, et al (1994) Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 150: 896–903

    PubMed  CAS  Google Scholar 

  50. Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Vallverdu I, Fernandez R, et al (1995) A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 332: 345–350

    Article  PubMed  CAS  Google Scholar 

  51. Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, Johnson MM, Browder RW, Bowton DL, Haponik EF (1996) Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 335: 1864–1869

    Article  PubMed  CAS  Google Scholar 

  52. Jubran A, Tobin MJ (1998) Discontinuation of ventilatory support. In: Marini JJ, Slutsky AS (eds) Physiological basis of ventilatory support. Dekker, New York, pp 1283–1313

    Google Scholar 

  53. Cereda MF, Sparacino M, Frank A, Trawoger R, Kolobov T (1999) Efficacy of tracheal gas insufflation in spontaneously breathing sheep with lung injury. Am J Respir Crit Care Med 159: 845–850

    PubMed  CAS  Google Scholar 

  54. Hoyt JD, Marini JJ, Nahum A (1996) Effect of tracheal gas insufflation on demand valve triggering and total work during continuous positive airway pressure ventilation. Chest 110: 775–783

    Article  PubMed  CAS  Google Scholar 

  55. Murias G, Fernandez R, Romero PV, Nahum A, Blanch L (2000) Expiratory tracheal gas insufflation reduces minute ventilation during continuous positive airway pressure. Am J Respir Crit Care Med 161: A387

    Google Scholar 

  56. Lucangelo U, Blanch L, Artigas A, Fernandez R (1995) Resistencia al flujo aereo sobreanadida por los diferentes materiales del circuito ventilatorio de pacientes en ventilacion mecanica. Med Intensiva 19: 125–129

    Google Scholar 

  57. Blanch L, Fernandez R, Saura P, Baigorri F, Artigas A (1994) Relationship between expired capnogram and respiratory system resistance in critically ill patients during total ventilatory support. Chest 105: 219–223

    Article  PubMed  CAS  Google Scholar 

  58. Hess D (1990) Capnometry and capnography: technical aspects, physiologic aspects, and clinical applications. Respir Care 35: 557–576

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanch, L., Murias, G., Romero, P.V., Fernandez, R., Nahum, A. (2003). Application of Tracheal Gas Insufflation for Critical Care Patients. In: Mancebo, J., Net, A., Brochard, L. (eds) Mechanical Ventilation and Weaning. Update in Intensive Care Medicine, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56112-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56112-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44181-6

  • Online ISBN: 978-3-642-56112-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics