Skip to main content

Controlled Mechanical Ventilation

  • Conference paper
Mechanical Ventilation and Weaning

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 36))

  • 314 Accesses

Abstract

Although any form of pressure-assisted breathing (such as assist/control, synchronized mandatory ventilation, or pressure support) can provide the power required to accomplish the breathing workload, effort during these cycles may be highly variable [1, 2]. The term “controlled ventilation” (CMV) implies that all ventilatory support is provided mechanically and that the patient’s efforts to breathe have been effectively silenced. Accordingly, the pressure applied at the airway opening accounts for the entire inspiratory transpulmonary pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marini JJ, Rodriguez RM, Lamb VJ (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134: 902–909

    PubMed  CAS  Google Scholar 

  2. Marini JJ, Smith TC, Lamb VJ (1988) External work output and force generation during synchronized intermittent mechanical ventilation. Effect of machine assistance an breathing effort. Am Rev Respir Dis 138: 1169–1179

    PubMed  CAS  Google Scholar 

  3. Coggeshall JW, Marini JJ, Newman JH (1985) Improved oxygenation after muscle relaxation in the adult respiratory distress syndrome. Arch Intern Med 145: 1718–1720

    Article  PubMed  CAS  Google Scholar 

  4. Lynch JP, Mhyre JG, Dantzker DR (1979) The influence of cardiac output on intrapulmonary shunt. J Appl Physiol 46: 315–321

    PubMed  CAS  Google Scholar 

  5. Schumacker PT, Cain SM (1987) The concept of critical oxygen delivery. Intensive Care Med 13: 223–229

    Article  PubMed  CAS  Google Scholar 

  6. Chandra A, Coggeshall JW, Ravenscraft SA, Marini JJ (1994) Hyperpnea limits the volume recruited by positive end-expiratory pressure. Am J Respir Crit Care Med 150: 911–917

    PubMed  CAS  Google Scholar 

  7. Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151: 562–569

    PubMed  CAS  Google Scholar 

  8. Gurevitch MJ, Van Dyke J, Young ES, Jackson K (1986) Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome: treatment with inverse ratio ventilation. Chest 89: 211–213

    Article  PubMed  CAS  Google Scholar 

  9. Lessard MR, Guerot E, Lorino H, et al (1994) Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 80: 983–991

    Article  PubMed  CAS  Google Scholar 

  10. Marcy TW, Marini JJ (1991) Inverse ratio ventilation: rationale and implementation. Chest 100: 495–504

    Article  Google Scholar 

  11. Westenskow DR, Pace NL (1982) Differential lung ventilation. In: Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff, Boston, pp 313–324

    Google Scholar 

  12. Gattinoni L, Pesenti A. Mascheroni D, et al (1986) Low frequency positive pressure ventilation with extracorporeal CO2 removal in severe acute respiriratory failure. JAMA 256: 881–886

    Article  PubMed  CAS  Google Scholar 

  13. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385–387

    PubMed  CAS  Google Scholar 

  14. Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150: 1722–1737

    PubMed  CAS  Google Scholar 

  15. Tuxen DV (1994) Permissive hypercapnic ventilation. Am J Respir Crit Care Med 150: 870–874

    PubMed  CAS  Google Scholar 

  16. Hickling KG, Joyce C (1995) Permissive hypercapnia in ARDS and its effect on tissue oxygenation. Acta Anaesthesiol Scand 107: 201–208

    Article  CAS  Google Scholar 

  17. Hickling KG, Henderson SJ, Jackson R Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Int Care Med 1990 16: 372–377

    Article  CAS  Google Scholar 

  18. Hickling KG, Walsh J, Henderson S, et al (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578

    Article  PubMed  CAS  Google Scholar 

  19. Truwit JD, Marini JJ (1988) Evaluation of thoracic mechanics in. the ventilated patient. 1: Primary measurements. 2: Applied mechanics. J Crit Care 3:133–150, 199–213

    Google Scholar 

  20. Cunningham DJC, Robbins PA, Wolff CB (1986) Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Geiger SR (ed) Handbook of physiology, sect 3: The respiratory system, vol 2. American Physiology Society, Bethesda, pp 475–528

    Google Scholar 

  21. Prechter GC, Nelson SB, Hubmayr RD (1990) The ventilatory threshold for carbon dioxide. Am Rev Respir Dis 141: 758–764

    Article  PubMed  CAS  Google Scholar 

  22. Hansen-Flaschen J, Cowe J, Raps EC (1993) Neuromuscular blockade in the intensive care unit–more than we bargained for. Am Rev Respir Dis 147: 234–236

    Article  PubMed  CAS  Google Scholar 

  23. Greenleaf JE, Kozlowski S (1982) Physiological consequences of reduced physical activity during bed rest. Exerc Sport Sci Rev 10: 84–119

    Article  PubMed  CAS  Google Scholar 

  24. Bolton CF (1996) Sepsis and the systemic inflammatory response syndrome: neuromuscular manifestations. Crit Care Med 24: 1408–1416

    Article  PubMed  CAS  Google Scholar 

  25. Douglass JA, Tuxen DV, Horne M, et al (1992) Myopathy in severe asthma. Am Rev respir Dis 146: 517–519

    PubMed  CAS  Google Scholar 

  26. Brun-Buisson C, Gherardi R (1988) Hydrocortisone and pancuronium bromide: acute myopathy during status asthmaticus (letter). Crit Care Med 16: 732

    Google Scholar 

  27. Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruenke LD, Miller RD (1992) Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 327: 524–528

    Article  PubMed  CAS  Google Scholar 

  28. Leatherman JW, Fluegel WL, David WS, et al (1996) Muscle weakness in mechanically ventilated patients with severe asthma. Am J Respir Crit Care Med 153: 1686–1690

    PubMed  CAS  Google Scholar 

  29. Hoey LL, Joslin SM, Nahum A, et al (1995) Prolonged neuromuscular blockade in two critically ill patients treated with atracurium. Pharmacotherapy 15: 254

    PubMed  CAS  Google Scholar 

  30. Gattinoni L, Pelosi P, Crotti S, et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814

    PubMed  CAS  Google Scholar 

  31. Gattinoni L, Bombino M, Pelosi P, et al (1994) Lung structure and function in different states,of severe adult respiratory distress syndrome. JAMA 271: 1772–1779

    Article  PubMed  CAS  Google Scholar 

  32. Pelosi P, D’Andrea L, Vitale G, et al (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 8–13

    PubMed  CAS  Google Scholar 

  33. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Article  PubMed  CAS  Google Scholar 

  34. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255: 2463–2465

    Article  PubMed  CAS  Google Scholar 

  35. Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Grit Care Med 150: 184–193

    CAS  Google Scholar 

  36. Marini JJ, Tyler ML, Hudson LD, Davis BS, Huseby JS (1984) Influence of head-dependent positions on lung volume and oxygen saturation in chronic airflow obstruction. Am Rev Respir Dis 129: 101–105

    PubMed  CAS  Google Scholar 

  37. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SVO2 Collaborative Group. N Engl J Med 333: 1025–1032

    Article  PubMed  CAS  Google Scholar 

  38. Raine JM, Bishop JM (1963) A-a difference in O2 tension and physiological dead space in normal man. J Appl Physiol 18: 284–288

    PubMed  CAS  Google Scholar 

  39. Refsum HE (1963) Relationship between state of consciousness and arterial hypoxemia and hypercapnia in patients with pulmonary insufficiency breathing own. Clin Sci 25: 361–367

    PubMed  CAS  Google Scholar 

  40. Schoene RB, Horbein TF (1988) High altitude adaptation. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine. Saunders, Philadelphia, pp 196–220

    Google Scholar 

  41. Hochachka PW (1996) Metabolic defense adaptations to hypobaric hypoxia in man. In: Fregly MJ, Blatteis CM (eds) Environmental physiology, vol II, chap 48. Handbook of physiology, sect 4. Oxford University Press, New York, pp 1115–1124

    Google Scholar 

  42. Schumacker PT, Samsel RW (1990) Oxygen supply consumption in ARDS. Clin Chest Med 11: 715–722

    PubMed  CAS  Google Scholar 

  43. Tuchschmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102: 216–222

    Article  PubMed  CAS  Google Scholar 

  44. Shoemaker WC, Appel PL, Kram KB, Waxman K, Lee TS (1988) Protective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94: 1176–1186

    Article  PubMed  CAS  Google Scholar 

  45. Hotchkiss RS, Karl IE (1992) Re-evaluation of the role of cellular hypoxic and bioenergetic failure in sepsis. JAMA 267: 1503–1510

    Article  PubMed  CAS  Google Scholar 

  46. Nunn JF (1977) Applied respiratory physiology, 2nd edn. Butterworths, Boston, pp 460–470

    Google Scholar 

  47. Narins RG (1985) Alkali therapy of metabolic acidosis due to organic acids: the case for the judicious use of sodium bicarbonate. AKF Nephrol Lett 2: 13

    Google Scholar 

  48. Arieff Al, Leach W, Park R, Lazarowitz VC (1982) Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol 242: F586–591

    PubMed  CAS  Google Scholar 

  49. Kacmarek R, Hickling KG (1993) Permissive hypercapnia. Respir Care 38: 373–387

    Google Scholar 

  50. Kilburn KH, Dowell AR (1971) Renal function in respiratory failure. Arch Int Med 127: 754–762

    Article  CAS  Google Scholar 

  51. Pesenti A (1990) Target blood gases during ARDS ventilatory management. Int Care Med 16: 349–351

    Article  CAS  Google Scholar 

  52. Marini JJ (1991) Controlled ventilation: targets, hazards and options. In: Marini JJ, Roussos C (eds) Ventilatory failure. Springer, Berlin Heidelberg New York, pp 269–292

    Google Scholar 

  53. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  54. Kolobow T, Moretti MP, Furmagalli R, et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  55. Dreyfuss D, Saumon G (1994) Should the lung be rested or recruited? The Charybdis and Scylla of ventilatory management. Am J Respir Crit Care Med 149: 1066–1067

    PubMed  CAS  Google Scholar 

  56. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    PubMed  CAS  Google Scholar 

  57. Morris AH, Wallace CJ, Menlove RL, Clemmer TP, Orme JF Jr, Weaver LK, Dean NC, Thomas F, East TD, Pace NL, et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 295–305

    PubMed  CAS  Google Scholar 

  58. Amato MBP, Barbas CSV, Medeiros DM, Schettino GDP, Filho GL, et al (1995) Beneficial effects of the “open lung” approach with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 1835–1846

    PubMed  CAS  Google Scholar 

  59. Amato MBP, Barbas CSV, Medeiros D, et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531

    Google Scholar 

  60. Narins RG, Bastl CP, Rudnick MR, et al (1982) Acid-base metabolism. In: Golnick HC (ed) Current nephrology. Wiley, New York, pp 7–9

    Google Scholar 

  61. Mitchell JH, Wildenthal K, Johnson RL Jr (1972) The effects of acid base disturbances on cardiovascular and pulmonary function. Kidney Int 1: 375

    Article  PubMed  CAS  Google Scholar 

  62. Housley E, Clarke SW, Hedworth-Whitty RB, Bishop JW (1970) Effect of acute and chronic acidemia and associated hypoxemia on the pulmonary circulation of patients with chronic bronchitis. Cardiovasc Res 4: 482–489

    Article  PubMed  CAS  Google Scholar 

  63. Reynolds FOR (1975) Management of hyaline membrane disease. Br Med Bull 31: 18–24

    PubMed  CAS  Google Scholar 

  64. Woodring JH (1985) Pulmonary interstitial emphysema in the adult respiratory distress syndrome. Crit Care Med 13: 786–791

    Article  PubMed  CAS  Google Scholar 

  65. Albelda SM, Gefter WB, Kelley MA, et al (1983) Ventilator-induced subpleural air cysts: clinical, radiographic, and pathologic significance. Am Rev Respir Dis 127: 360–365

    PubMed  CAS  Google Scholar 

  66. Marini JJ, Culver BH (1989) Systemic air embolism consequent to mechanical ventilation in ARDS. Ann Intern Med 110: 699–703

    PubMed  CAS  Google Scholar 

  67. Churg A, Golden J, Fligiel S, Hogg JC (1983) Bronchopulmonary dysplasia in the adult. Am Rev Respir Dis 127: 117–120

    PubMed  CAS  Google Scholar 

  68. Slavin G, Nunn JF, Crow J, Core C (1982) Bronchiolectasis–a complication of artificial ventilation. Br Med J 285: 931–934

    Article  CAS  Google Scholar 

  69. Rouby JJ, Lherm T,, de Lasale E et al (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383–389

    Article  PubMed  CAS  Google Scholar 

  70. Pesenti A, Pelosi P, Gattinoni L (1990) Lung mechanics in ARDS. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 231–238

    Google Scholar 

  71. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  72. Gattinoni L, Mascheroni D, Basilco E, Foti G, Pesenti A, Avalli L (1987) Volume/pressure curve of total respiratory system in paralyzed patients: artefacts and correction factors. Intensive Care Med 13: 19–25

    Article  PubMed  CAS  Google Scholar 

  73. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128

    PubMed  CAS  Google Scholar 

  74. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311–315

    PubMed  CAS  Google Scholar 

  75. Marini JJ (1996) Evolving concepts in the ventilatory management of ARDS. Clin Chest Med 17: 555–575

    Article  PubMed  CAS  Google Scholar 

  76. Marini JJ (1994) Ventilation of the acute respiratory distress syndrome. Looking for Mr. Goodmode. Anesthesiology 80: 972–975

    Article  CAS  Google Scholar 

  77. Muscedere JG, Mullen JB, Gan K, et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  78. Matamis D, LeMaire F, Harf A, et al (1984) Total respiratory pressure volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  79. Bryan AC, Froese AB (1991) Reflections on the HIFI trial. Pediatrics 87: 565

    PubMed  CAS  Google Scholar 

  80. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608

    PubMed  CAS  Google Scholar 

  81. Koltan M, Cattran CB, Kent G (1982) Oxygenation during high-frequency ventilation in two models of lung injury. Anesth Analg 61: 323–327

    Google Scholar 

  82. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. The effect of PEEP on auto-PEEP. J Appl Physiol 65: 1488–1499

    PubMed  CAS  Google Scholar 

  83. Petrof BJ, Legare M, Goldberg P, Milic-Emili J, Gottfried SB (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141: 281–289

    PubMed  CAS  Google Scholar 

  84. Tuxen D (1989) Detrimental effects of positive end expiratory pressure during controlled mechanical ventilation of patients with severe airflow obstruction. Am Rev Respir Dis 140: 5–9

    Article  PubMed  CAS  Google Scholar 

  85. Hotchkiss JR, Crooke PS, Adams AB, Marini JJ (1993) Implications of a biphasic two-compartment model of constant flow ventilation for the clinical setting. J Crit Lit Care 2: 114–123

    Google Scholar 

  86. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133

    PubMed  CAS  Google Scholar 

  87. Mathieu-Costello O, Willford DC, Fu Z, et al (1995) Pulmonary capillaries are more resistant to stress failure in dogs than in rabbits. J Appl Physiol 79: 908

    PubMed  CAS  Google Scholar 

  88. Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2: 592–607

    PubMed  CAS  Google Scholar 

  89. Marini JJ (1990) Lung mechanics in ARDS: recent conceptual advances and implications for management. Clin Chest Med 11: 673–690

    PubMed  CAS  Google Scholar 

  90. Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiological determinants and clinical importance. 2: Clinical implications. Crit Care Med 20: 1604–1616

    Article  PubMed  CAS  Google Scholar 

  91. Hyatt RE (1983) Expiratory flow limitation. J Appl Physiol: Respirat Environ Exercise Physiol 55: 1–8

    CAS  Google Scholar 

  92. Gammon BR, Shin MS, Buchalter SE (1992) Pulmonary barotrauma in mechanical ventilation: patterns and risk factors. Chest 102: 568–572

    Article  PubMed  CAS  Google Scholar 

  93. Cournand A, Motley HI., Werko L, Richards DW (1948) Physiologic studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152: 162–174

    PubMed  CAS  Google Scholar 

  94. Guyton AC, Jones CE, Coleman TC (1973) Circulatory physiology. In: Cardiac output and its regulation. W.B. Saunders, Philadelphia, p 193

    Google Scholar 

  95. Sladen A, Laver MB, Pontoppidan H (1968) Pulmonary complications and water retention in prolonged mechanical ventilation. N Engl J Med 279: 448–453

    Article  PubMed  CAS  Google Scholar 

  96. Kumar A, Falke K, Geffin B, Aldredge CF, Laver MB, Lowenstein E, Pontoppidan H (1970) Continuous positive pressure ventilation in acute respiratory failure. N Engl J Med 283: 1430–1436

    Article  PubMed  CAS  Google Scholar 

  97. Manquez JM, Douglas ME, Downs JB, et al (1979) Renal function and cardiovascular responses during positive airway pressure. Anesthesiology 50: 393–398

    Article  Google Scholar 

  98. Connors AF, McCaffree DR, Gray BA (1981) Effect of inspiratory flow rate on gas exchange during mechanical ventilation. Am Rev Respir Dis 124: 537–543

    PubMed  Google Scholar 

  99. Cole AGH, Weller SF, Sykes MK (1984) Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 10: 227–232

    Article  PubMed  CAS  Google Scholar 

  100. Fuleihan SF, Wilson RS, Pontoppidan H (1976) Effect of mechanical ventilation with end-inspiratory pause on blood-gas exchange. Anesth Analg 55: 122–130

    Article  PubMed  CAS  Google Scholar 

  101. Ravenscraft SA, Burke WC, Marini JJ (1992) Volume-cycled decelerating flow: an alternative form of mechanical ventilation. Chest 101: 1342–1351

    Article  PubMed  CAS  Google Scholar 

  102. Toben BP, Lewandowski V (1988) Nontraditional and new ventilatory techniques. Crit Care Nurs Q 11: 12–28

    Google Scholar 

  103. Kacmarek RM, Hess D (1990) Pressure controlled inverse ratio ventilation. Panacea or auto-PEEP? Respir Care 35: 945–948

    Google Scholar 

  104. Tharatt RS, Allen RP, Albertson TE (1988) Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 94: 755–762

    Article  Google Scholar 

  105. Pesenti A, Marcolin R, Prato P, Borelli M, Riboni A, Gattinoni L (1985) Mean airway pressure vs. positive end-expiratory pressure during mechanical ventilation. Crit Care Med 13: 34–37

    Article  PubMed  CAS  Google Scholar 

  106. Marini JJ (1995) Inverse ratio ventilation–simply an alternative, or something more? Crit Care Med 23: 224–228

    Article  PubMed  CAS  Google Scholar 

  107. Armstrong BW Jr, Maclntyre NR (1995) Pressure-controlled, inverse ratio ventilation that avoids air trapping in the adult respiratory distress syndrome. Crit Care Med 23: 279–285

    Article  PubMed  Google Scholar 

  108. Sydow M, Burchardi H, Ephraim E, et al (1994) Long-term effects of two different ventilatory modes an oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med 149: 1550–1556

    PubMed  CAS  Google Scholar 

  109. Shanholtz C, Brower R (1994) Should inverse ratio ventilation be used in adult respiratory distress syndrome? Am J Respir Crit Care Med 149: 1354

    PubMed  CAS  Google Scholar 

  110. Marini JJ, Crooke PS, Truwit JD (1989) Determinants and limits of pressure preset ventilation: a mathematical model of pressure control. J Appl Physiol 67: 1081–1092

    PubMed  CAS  Google Scholar 

  111. Marini JJ, Crooke PS (1993) A general mathematical model for Respiriratory dynamics relevant to the clinical setting. Am Rev Respir Dis 147: 14–24

    Article  PubMed  CAS  Google Scholar 

  112. McKibben AW, Ravenscraft SA (1996) Pressure controlled and volume-cycled ventilation. Clin Chest Med 17 395–410

    Article  PubMed  CAS  Google Scholar 

  113. Cullen JH (1963) An evaluation of tracheostomy in pulmonary emphysema. Ann Intern Med 58: 953–960

    PubMed  CAS  Google Scholar 

  114. Stresemann E (1968) Washout of anatomical dead space. Design of a method and experimental study using an external dead space. Respiration 25: 281

    Article  PubMed  CAS  Google Scholar 

  115. Stresemann E, Votteri BA, Sattler FP (1969) Washout of anatomical dead space for alveolar hypoventilation. Respiration 26: 425–434

    Article  Google Scholar 

  116. Hurewitz A, Bergofsky E, Vomero E (1991) Airway insufflation: Increasing flow rates progressively reduce dead space in respiratory failure. Am Rev Respir Dis 144: 1229–1233

    PubMed  CAS  Google Scholar 

  117. Bergofsky EH, Hurewitz AN (1989) Airway insufflation: physiologic effects on acute and chronic gas exchange in humans. Am Rev Respir Dis 140: 885–890

    PubMed  CAS  Google Scholar 

  118. Long SE, Menon AS, Kato H, Goldstein RS, Slutsky AS (1988) Constant oxygen insufflation ( COI) in a ventilatory failure model. Am Rev Respir Dis 138: 630–635

    PubMed  CAS  Google Scholar 

  119. Benditt J, Pollock M, Roa J, Celli B (1993) Transtracheal delivery of gas decreases the oxygen cost of breathing. Am Rev Respir Dis 147: 1207–1210

    PubMed  CAS  Google Scholar 

  120. Nahum A, Burke WC, Ravenscraft SA, Marcy TW, Adams AB, Crooke PS, Marini JJ (1992) Lung mechanics and gas exchange during pressure controlled ventilation in dogs: augmentation of CO2 elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965–973

    PubMed  CAS  Google Scholar 

  121. Nahum A, Ravenscraft SA, Adams AB, et al (1995) Inspiratory tidal volume sparing effects of tracheal gas insufflation in dogs with oleic acid-induced lung injury. J Crit Care 10: 115–121

    Article  PubMed  CAS  Google Scholar 

  122. Belghith M, Fierobe L, Brunet F, et al (1995) Is tracheal gas insufflation an alternative to extrapulmonary gas exchangers in severe ARDS? Chest 107: 1416

    Article  PubMed  CAS  Google Scholar 

  123. Burke WC, Nahum A, Ravenscraft SA, Nakos G, Adams AB, Marcy TW, Marini JJ (1993) Modes of tracheal gas insufflation: comparison of continuous and phase specific gas injection in normal dogs. Am Rev Respir Dis 148: 562–568

    Article  PubMed  CAS  Google Scholar 

  124. Nahum A, Ravenscraft, SA, Nakos G, Burke WC, Adams AB, Marcy TW, Marini JJ (1992) Tracheal gas insufflation during pressure controlled ventilation: effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411–1418

    PubMed  CAS  Google Scholar 

  125. Slutsky AS, Watson J, Leith DE, Brown R (1985) Tracheal insufflation O, ( TRIO) at low flow rates sustains life for several hours. Anesthesiology 63: 278–286

    Article  PubMed  CAS  Google Scholar 

  126. Isabey D, Boussignac G, Harf A (1989) Effect of air entrainment on airway pressure during endotracheal gas injection. J Appl Physiol 67: 771–779

    PubMed  CAS  Google Scholar 

  127. Slutsky AS, Menon AS (1987) Catheter position and blood gases during constantflow ventilation. J Appl Physiol 62: 513–519

    Article  PubMed  CAS  Google Scholar 

  128. Ravenscraft SA, Shapiro RS, Nahum A, Burke WC, Adams AB, Nakos G, Marini JJ (1996) Tracheal gas insufflation: catheter effectiveness is determined by expiratory flush volume, Am J Respir Crit Care Med 153: 1817–1824

    PubMed  CAS  Google Scholar 

  129. Gilbert J, Larsson A, Smith RB, Bunegin L (1991) Intermittent-flow expiratory ventilation (IFEV): delivery technique and principles of action — a preliminary communication. Biomed Instrum Technol 25: 451–456

    PubMed  CAS  Google Scholar 

  130. Jonson B, Similowski T, Levy P, Vires N, Pariente R (1990) Expiratory flushing of airways: a method to reduce dead space ventilation. Eur Respir J 3: 1202

    PubMed  CAS  Google Scholar 

  131. Ravenscraft SA, Burke WC, Nahum A, Adams AB, Nakos G, Marcy TW, Marini JJ (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345–351

    PubMed  CAS  Google Scholar 

  132. Marini JJ (1990) Ventilatory management of chronic obstructive pulmonary disease. In: Cherniack NS (ed) Chronic obstructive pulmonary disease. W.B. Saunders, Philadelphia, pp 495–506

    Google Scholar 

  133. Marini JJ, Wheeler AW (1997) Critical care medicine — the essentials, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, J.J. (2003). Controlled Mechanical Ventilation. In: Mancebo, J., Net, A., Brochard, L. (eds) Mechanical Ventilation and Weaning. Update in Intensive Care Medicine, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56112-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56112-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44181-6

  • Online ISBN: 978-3-642-56112-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics