Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

  • 101 Accesses

Abstract

Studies dating back four decades have implicated mitochondrial damage in the pathogenesis of cell injury during ischemia/reperfusion and hypoxia/reoxygenation. Multiple structural and biochemical changes have been described [1, 2]. These include development of condensation or swelling of the mitochondrial matrix depending on the stage of the lesion [3], impairment of electron transport most consistently involving complex I of the electron transport chain, but not limited to it [4, 5], functional abnormalities of other inner membrane proteins such as the adenine nucleotide translocase and the F1F0-ATPase [58], and increases of inner membrane permeability [911]. However, the pathogenic significance of most of these changes and, indeed, the question of whether mitochondrial dysfunction plays a decisive role in cell injury remained subject to debate and uncertainty [1, 2, 5] because of a number of confounding factors. The mitochondrial inner membrane permeability alterations appeared to be nonspecific. Effects of massive post lethal cellular calcium influx confounded interpretation of more pathogenically relevant earlier events in many studies. The specific defect responsible for lethal plasma membrane damage during ATP depletion conditions that produce rapid, necrotic cell death was not defined. The importance of apoptotic cell death was not appreciated and its mechanisms were unknown. The vast majority of measurements used isolated mitochondria, which are subject to selection and further damage during their preparation and which, under typical in vitro study conditions, lack extra-mitochondrial protective mechanisms that modulate injury as it occurs within cells. In some instances, ATP depletion per se appeared to be insufficient to account for the cellular damage associated with mitochondrial dysfunction, and, in others [1], overall cellular injury was paradoxically promoted by energetic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piper HM, Noll T, Siegmund B (1994) Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28:1–15

    Article  CAS  PubMed  Google Scholar 

  2. Di Lisa F, Menabò R, Canton M, Petronilli V (1998) The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta 1366:69–78

    Article  PubMed  Google Scholar 

  3. Glaumann B, Glaumann H, Berezesky IK, Trump BF (1977) Studies on cellular recovery from injury: II. Ultrastructural studies of the recovery of the pars convoluta of the rat kidney from temporary ischemia. Virchows Arch 24:1–18

    CAS  Google Scholar 

  4. Rouslin W (1983) Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol 244:H743–H748

    CAS  PubMed  Google Scholar 

  5. Vogt MT, Farber E (1968) On the molecular pathology of ischemic renal cell death. Am J Pathol 53:1–26

    CAS  PubMed  Google Scholar 

  6. Mergner WJ, Chang S, Marzella L, Kahng MW, Trump BF (1979) Studies on the pathogenesis of ischemic cell injury. VIII. ATPase of rat kidney mitochondria. Lab Invest 40:686–694

    CAS  PubMed  Google Scholar 

  7. Rouslin W, Broge CW (1993) Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts. Am J Physiol 264:C209–C216

    CAS  PubMed  Google Scholar 

  8. Henke W, Jung K (1991) Ischemia decreases the content of the adenine nucleotide translocator in mitochondria of rat kidney. Biochim Biophys Acta 1056:71–75

    Article  CAS  PubMed  Google Scholar 

  9. Mergner WJ, Smith MA, Trump BF (1977) Studies on the pathogenesis of ischemic cell injury. IV. Alteration of ionic permeability of mitochondria from ischemic rat kidney. Exp Mol Pathol 26:1–12

    Article  PubMed  Google Scholar 

  10. Borutaite V, Morkuniene R, Budriunaite A, et al (1996) Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia. J Mol Cell Cardiol 28:2195–2201

    Article  CAS  PubMed  Google Scholar 

  11. Mittnacht SJ, Färber JL (1981) Reversal of ischemic mitochondrial dysfunction. J Biol Chem 256:3199–3206

    CAS  PubMed  Google Scholar 

  12. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  13. Lemasters JJ, Nieminen AL, Qian T, et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196

    Article  CAS  PubMed  Google Scholar 

  14. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701

    Article  CAS  PubMed  Google Scholar 

  15. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed  Google Scholar 

  16. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    CAS  PubMed  Google Scholar 

  17. Crompton M (2000) Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol 529:11–21

    Article  CAS  PubMed  Google Scholar 

  18. Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366:79–94

    Article  CAS  PubMed  Google Scholar 

  19. Saikumar P, Dong Z, Weinberg JM, Venkatachalam MA (1998) Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene 17:3341–3349

    Article  PubMed  Google Scholar 

  20. Yang J, Liu XS, Bhalla K, et al (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  CAS  PubMed  Google Scholar 

  22. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    Article  CAS  PubMed  Google Scholar 

  23. Varnes ME, Chiu SM, Xue LY, Oleinick NL (1999) Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem Biophys Res Commun 255:673–679

    Article  CAS  PubMed  Google Scholar 

  24. Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276: H496–H502

    CAS  PubMed  Google Scholar 

  25. Woodfield K, Rück A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336:287–290

    CAS  PubMed  Google Scholar 

  26. Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354

    Article  CAS  PubMed  Google Scholar 

  27. Pastorino JG, Snyder JW, Hoek JB, Farber JL (1995) Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition. Am J Physiol 268: C676–C685

    CAS  PubMed  Google Scholar 

  28. Qian T, Nieminen AL, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in pH-dependent reperfusion injury to hepatocytes. Am J Physiol 273:C1783–C1792

    CAS  PubMed  Google Scholar 

  29. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172

    Article  CAS  PubMed  Google Scholar 

  30. Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794

    Article  CAS  PubMed  Google Scholar 

  31. Saikumar P, Dong Z, Patel Y, et al (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415

    Article  CAS  PubMed  Google Scholar 

  32. O’Rourke B (2000) Pathophysiological and protective role of mitochondrial ion channels. J Physiol 529:23–26

    Article  PubMed  Google Scholar 

  33. Grover GJ, Garlid KD (2000) ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695

    Article  CAS  PubMed  Google Scholar 

  34. Bernardi P, Broekemeier KM, Pfeiffer DR (1994) Recent progress on regulation of the mitochondrial permeability transition pore; A cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26:509–518

    Article  CAS  PubMed  Google Scholar 

  35. Broekemeier KM, Pfeiffer DR (1995) Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: Relationship between pore opening and the activity of mitochondrial phospholipases. Biochemistry 34:16440–16449

    Article  CAS  PubMed  Google Scholar 

  36. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68

    Article  CAS  PubMed  Google Scholar 

  37. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  38. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274: 22532–22538

    Article  CAS  PubMed  Google Scholar 

  39. Wirthensohn G, Guder G (1986) Renal substrate metabolism. Physiol Rev 66:469–497

    CAS  PubMed  Google Scholar 

  40. Bastin J, Cambon N, Thompson M, Lowry OH, Burch HB (1987) Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Int 31:1239–1247

    Article  CAS  PubMed  Google Scholar 

  41. Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, Shulman RG (1986) Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci USA 83: 6142–6145

    Article  CAS  PubMed  Google Scholar 

  42. Zager RA (1990) Hyperthermia: effects on renal ischemic/reperfusion injury in the rat. Lab Invest 63:360–369

    CAS  PubMed  Google Scholar 

  43. Trifillis AL, Kahng MW, Crowley RA, Trump BF (1984) Metabolic studies of postischemic acute renal failure in the rat. Exp Mol Pathol 40:155–168

    Article  CAS  PubMed  Google Scholar 

  44. Garza-Quintero R, Weinberg JM, Ortega-Lopez J, Davis JA, Venkatachalam MA (1993) Conservation of structure in ATP depleted proximal tubules. Role of calcium, polyphosphoinositides and glycine. Am J Physiol 265:F605–F623

    CAS  PubMed  Google Scholar 

  45. Weinberg, J. M., J. A. Davis, M. Abarzua, T. Rajan (1987) Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Clin Invest 80:1446–1454

    Article  CAS  PubMed  Google Scholar 

  46. Weinberg JM, Nissim I, Roeser NF, Davis JF, Schultz S, Nissim I (1991) Relationships between intracellular amino acid levels and protection against injury to isolated proximal tubules. Am J Physiol 260:410–419

    Google Scholar 

  47. Weinberg JM, Davis JA, Venkatachalam MA (1997) Cytosolic free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules. J Clin Invest 100:713–722

    Article  CAS  PubMed  Google Scholar 

  48. Dong Z, Patel Y, Saikumar P, Weinberg JM, Venkatachalam MA (1998) Development of porous defects in plasma membranes of ATP-depleted Madin-Darby canine kidney cells and its inhibition by glycine. Lab Invest 78:657–668

    CAS  PubMed  Google Scholar 

  49. Weinberg JM, Roeser NF, Davis JA, Venkatachalam MA (1997) Glycine-protected, hypoxic, proximal tubules develop severely compromised energetic function. Kidney Int. 52:140–151

    Article  CAS  PubMed  Google Scholar 

  50. Weinberg JM, Roeser NF, Venkatachalam MA (1999) Modulation of tyrosine phosphorylation of proximal tubule focal adhesion proteins during hypoxia/reoxygenation. J Am Soc Nephrol 10:642A (Abst)

    Google Scholar 

  51. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci 97:2826–2831

    Article  CAS  PubMed  Google Scholar 

  52. Weinberg JM, Venkatachalam MA, Roeser NF, et al (2000) Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol 279:F927–F943

    CAS  Google Scholar 

  53. Zager RA, Conrad DS, Burkhart K (1996) Phospholipase A2: A potentially important determinant of adenosine triphosphate levels during hypoxic-reoxygenation tubular injury. J Am Soc Nephrol 7:2327–2339

    CAS  PubMed  Google Scholar 

  54. Imberti R, Nieminen AL, Herman B, Lemasters JJ (1992) Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals. Res Commun Chem Pathol Pharmacol 78:27–38

    CAS  PubMed  Google Scholar 

  55. Pozzan T, Corps AN, Montecucco C, Hesketh TR, Metcalfe JC (1980) Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochim Biophys Acta 602:558–566

    Article  CAS  PubMed  Google Scholar 

  56. Hackenbrock CR, Rehn TG, Weinbach EC, Lemasters JJ (1971) Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell. J Cell Biol 51:123–137

    Article  CAS  PubMed  Google Scholar 

  57. Hackenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37:345–369

    Article  CAS  PubMed  Google Scholar 

  58. Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307:99–106

    CAS  PubMed  Google Scholar 

  59. Reers M, Smith TW, Chen LB (1991) J-Aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  CAS  PubMed  Google Scholar 

  60. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mor tality and millivolts. Trends Neurosci 23:166–174

    Article  CAS  PubMed  Google Scholar 

  61. Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex I. J Biol Chem 273:12662–12668

    Article  CAS  PubMed  Google Scholar 

  62. Broekemeier KM, Klocek CK, Pfeiffer DR (1998) Proton selective substate of the mitochondrial permeability transition pore: Regulation by the redox state of the electron transport chain. Biochemistry 37:13059–13065

    Article  CAS  PubMed  Google Scholar 

  63. Detry O, Willet K, Lambermont B, et al (1998) Comparative effects of University of Wisconsin and Euro-Collins solutions on pulmonary mitochondrial function after ischemia and reperfusion. Transplantation 65:161–166

    Article  CAS  PubMed  Google Scholar 

  64. Sanchez-Alcazar JA, Schneider E, Martinez MA, et al (2000) Tumor necrosis factor-alpha increases the steady-state reduction of cytochrome b of the mitochondrial respiratory chain in metabolically inhibited L929 cells. J Biol Chem 275:13353–13361

    Article  CAS  PubMed  Google Scholar 

  65. Simbula G, Glascott Jr PA, Akita S, Hoek JB, Farber JL (1997) Two mechanisms by which ATP depletion potentiates induction of the mitochondrial permeability transition. Am J Physiol. 273:C479–C488

    CAS  PubMed  Google Scholar 

  66. Nieminen AL, Saylor AK, Herman B, Lemasters JJ (1994) ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am J Physiol 267:C67–C74

    CAS  PubMed  Google Scholar 

  67. Weinberg JM, Buchanan DN, Davis JA, Abarzua M (1991) Metabolic aspects of protection by glycine against hypoxic injury to isolated proximal tubules. J Am Soc Nephrol 1:949–958

    CAS  PubMed  Google Scholar 

  68. Fontaine E, Bernardi P (1999) Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31:335–345

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez-Flecha B, Boveris A (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta 1243:361–366

    Article  PubMed  Google Scholar 

  70. Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 274:16188–16197

    Article  CAS  PubMed  Google Scholar 

  71. Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363:100–124

    Article  CAS  PubMed  Google Scholar 

  72. Malis CD, Bonventre JV (1986) Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem 261:14201–14208

    CAS  PubMed  Google Scholar 

  73. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJA (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336

    CAS  PubMed  Google Scholar 

  74. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    Article  CAS  PubMed  Google Scholar 

  75. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  CAS  PubMed  Google Scholar 

  76. Kim YK, Ko SH,. Woo JS, Lee SH, Jung JS (1998) Differences in H2O2 toxicity between intact renal tubules and cultured proximal tubular cells. Biochem Pharmacol 56:489–495

    Article  CAS  PubMed  Google Scholar 

  77. Kim YK, Woo JS, Kim YH, Jung JS, Kim BS, Lee SH (1995) Effect of renal ischaemia on organic compound transport in rabbit kidney proximal tubule. Pharmacol Toxicol 77:121–129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weinberg, J.M., Venkatachalam, M.A., Nissim, I. (2002). Pharmacologic and Metabolic Mitochondrial Rescue. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics