Skip to main content

The Microcirculation in Sepsis

  • Chapter

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

Abstract

A microvasculature unit consists of a network of blood vessels (less than 250 μm diameter) lying between arteries and veins. Downstream arterioles form a diverging network of vessels ranging from first order arterioles (from 100 μm to 150 μm in diameter) to terminal arterioles (approximately 10 μm). Arterioles actively regulate their diameter in response to a variety of stimuli; terminal arterioles supply the capillary bed, a network of diverging and converging vascular segments (diameters from 3 to 10-μm) composed of a single layer of endothelial cells.Blood draining the capillary bed is collected by post-capillary venules (contain no smooth muscle) that converge into large venules (contain smooth muscle).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duling BR, Berne RM (1970) Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27:669–678

    Article  PubMed  CAS  Google Scholar 

  2. Ellsworth ML, Ellis CG, Popel AS, Pittman RN (1994) Role of microvessels in oxygen supply to tissue. News Physiol Sci 9:119–123

    Google Scholar 

  3. Ellsworth ML, Pittman RN (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 258:H1240–H1243

    PubMed  CAS  Google Scholar 

  4. Varela FE, Popel AS (1998) Effect of intracapillary resistance to oxygen transport on the diffusional shunting between capillaries. J Biomed Eng 10:400–405

    Article  Google Scholar 

  5. Pohl U, De Wit C, Gloe T (2000) Large arterioles in the control of blood flow: role of endothelium-dependent dilatation. Acta Physiol Scand 168:505–510

    Article  PubMed  CAS  Google Scholar 

  6. Duling BR, Hogan RD, Langille BL, et al (1987) Vasomotor control: functional hyperemia and beyond. Fed Proc 46:251–263

    PubMed  CAS  Google Scholar 

  7. Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391:169–173

    Article  PubMed  CAS  Google Scholar 

  8. Schubert R, Mulvany MJ (1999) The myogenic response: established facts and attractive hypotheses. Clin Sci 96:313–326

    Article  PubMed  CAS  Google Scholar 

  9. Stamler JS, Jia L, Eu JP, et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037

    Article  PubMed  CAS  Google Scholar 

  10. Ellsworth ML, Forrester CG, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161

    PubMed  CAS  Google Scholar 

  11. Groeneveld ABJ, Nauta JJP, Thijs LG (1988) Peripheral vascular resistance in septic shock: Its relation to outcome. Intensive Care Med 14: 141–147

    Article  PubMed  CAS  Google Scholar 

  12. Groeneveld ABJ, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99:140–152

    PubMed  CAS  Google Scholar 

  13. Dorio V (1989) Contribution of peripheral blood flow pooling to central hemodynamic disturbances during endotoxin insult in intact dogs. Crit Care Med 17:1314–1319

    CAS  Google Scholar 

  14. Carrol G, Synder J (1982) Hyperdynamic severe intravascular sepsis depends on fluid administration in cyonomolgus monkey. Am J Physiol 243:131–141

    Google Scholar 

  15. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196

    Article  PubMed  CAS  Google Scholar 

  16. Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  17. Fink M (2000) Cytopathic hypoxia. A concept to explain organ dysfunction in sepsis. Minerva Anestesiol 66:337–342

    PubMed  CAS  Google Scholar 

  18. Theuer CJ, Wilson MA, Steeb GD, Garrison RN (1993) Microvascular vasoconstriction and mucosal hypoperfusion of the rat small intestine during bacteremia. Circ Shock 40: 61–68

    PubMed  CAS  Google Scholar 

  19. Piper RD, Pitt-hyde M, Li F, Sibbald WJ, Potter RF (1996) Microcirculatory changes in rats skeletal muscle in sepsis. Am J Respir Crit Care Med 154: 931–937

    Article  PubMed  CAS  Google Scholar 

  20. Nevière R, Pitt-hyde M, Piper RD, Sibbald WJ, Potter R (1999) Microvascular perfusion deficits are not prerequisite for mucosal injury in septic rats. Am J Physiol 276: 933–937

    Google Scholar 

  21. Samsel RW, Nelson DP, Sanders WM, Wood LDH, Schumacker PT (1988) Effect of endotoxin on systemic and skeletal muscle 02 extraction. J Appl Physiol 65: 1377–1382

    PubMed  CAS  Google Scholar 

  22. Whitworth PW, Cryer HM, Garrison RN (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27:111–122

    PubMed  CAS  Google Scholar 

  23. Drazenovic R, Samsel RW, Wlam ME, Doerschuk CM, Schumacker PT (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72:259–265

    Article  PubMed  CAS  Google Scholar 

  24. Burton KS, Johnson PC (1972) Reactive hyperemia in individual capillaries of skeletal muscle. Am J Physiol 223:517–524

    PubMed  CAS  Google Scholar 

  25. Koller A, Kaley G (1990) Role of endothelium in reactive dilation of skeletal muscle arterioles. Am J Physiol 259:1313–1316

    Google Scholar 

  26. Astiz ME, Rackow EC, Haydon P, Karras G, Weil MH (1989) Skeletal muscle blood flow and venous capacitance in patients with severe sepsis and systemic hypoperfusion. Chest 96:363–366

    Article  PubMed  CAS  Google Scholar 

  27. Hartl WH, Gunther B, Inthorn D (1988) Reactive hyeremia in patients with septic conditions. Surgery 103:440–444

    PubMed  CAS  Google Scholar 

  28. Nevière R, Mathieu D, Chagnon JC, Lebleu N, Millien JP, Wattel F (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153:191–195

    Article  PubMed  Google Scholar 

  29. Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23:265–271

    Article  PubMed  CAS  Google Scholar 

  30. Kirschenbaum LA, Aziz M, Astiz ME, Saha DC, Rackow EC (2000) Influence of rheologic changes and platelet-neutrophil interactions on cell filtration in sepsis. Am J Respir Crit Care Med 161:1602–1607

    Article  PubMed  CAS  Google Scholar 

  31. Linderkamp O, Ruef P, Brenner B, Gulbins E, Lang F (1998) Passive deformability of mature, immature, and active neutrophils in healthy and septicemie neonates. Pediatr Res 44:946–950

    Article  PubMed  CAS  Google Scholar 

  32. Yodice PC, Astiz ME, Kurian BM, Lin RY, Rackow EC (1997) Neutrophil rheologic changes in septic shock. Am J Respir Crit Care Med 155:38–42

    Article  PubMed  CAS  Google Scholar 

  33. Baskurt OK, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157:421–427

    Article  PubMed  CAS  Google Scholar 

  34. Langenfeld JE, Machiedo GW, Lyons M, Rush BF, Dikdan G, Lysz TW (1994) Correlation between red blood cell deformability and changes in hemodynamic function. Surgery 116:859–867

    PubMed  CAS  Google Scholar 

  35. Machiedo GW, Powell RJ, Rush BF, Swislocki NI, Dikdan G (1989) The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-systems organ failure. Arch Surg 124:1386–1389

    Article  PubMed  CAS  Google Scholar 

  36. Eichelbronner O, Sielenkamper A, Cepinskas G, Sibbald WJ, Chin-Yee IH (2000) Endotoxin promotes adhesion of human erythrocytes to to human vascular endothelial cells under conditions of flow. Crit Care Med 28:1865–1870

    Article  PubMed  CAS  Google Scholar 

  37. ten Cate H (2000) Pathophysiology of disseminated intravascular coagulation in sepsis. Crit Care Med 28:S9–S11

    Article  PubMed  Google Scholar 

  38. Goddard CM, Poon BY, Klut ME, et al (1998) eukocyte activation does not mediate myocardial leukocyte retention during endotoxemia in rabbits. Am J Physiol 275:H1548–H1557

    PubMed  CAS  Google Scholar 

  39. Simchon S, Jan K, Chien S (1987) Influence of reduced red blood cell deformability on regional blood flow. Am J Physiol 253: 898–903

    Google Scholar 

  40. Vicaut E (1986) Statistical estimation of microcirculatory parameters. Microvasc Res 32: 244–247

    Article  PubMed  CAS  Google Scholar 

  41. Machiedo GW, Powell RJ, Rush BF, Swislocki NI, Dikdan G (1989) The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg 124:1386–1389

    Article  PubMed  CAS  Google Scholar 

  42. Powell RJ, Machiedo GW, Rush BJ, Dikdan G (1991) Oxygen free radicals: effect on red cell deformability in sepsis. Crit Care Med 19:732–735.

    Article  PubMed  CAS  Google Scholar 

  43. Hurd TC, Dasmahapatra KS, Rush BF, Machiedeo GW (1988) Red blood cell deformability in human and experimental sepsis. Arch Surg 123: 217–220

    Article  PubMed  CAS  Google Scholar 

  44. Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24:1072–1078

    Article  PubMed  CAS  Google Scholar 

  45. Langenfeld JE, Machiedo GW, Lyons M, Rush BF Jr, Dikdan G, Lysz TW (1994) Correlation between red blood cell deformability and changes in hemodynamic function. Surgery 116: 859–867

    PubMed  CAS  Google Scholar 

  46. Baskurt OK, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157: 421–427

    Article  PubMed  CAS  Google Scholar 

  47. Todd JC, Poulos ND, Davidson DL (1993) Role of leukocyte in endotoxin-induced alterations of the red blood cell membrane. Am Surg 59: 9–12

    PubMed  Google Scholar 

  48. Tyml K, Yu J, McCormack DJ (1998) Capillary and arteriolar responses to local vasodilators are impaired in a rat model of sepsis. J Appl Physiol 84:837–844

    PubMed  CAS  Google Scholar 

  49. Barroso-Arranda J, Schmid-Schonbien G, Sweifach BW, Mathison JC (1991) Polymorphonuclear neutrophil contribution to induced tolerance to bacterial lipopolysaccharide. Circ Res 69:1196–1206

    Article  Google Scholar 

  50. Goddard CM, Allard MF, Hogg JC, Walley KR (1996) Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 270:H1446–H1452

    PubMed  CAS  Google Scholar 

  51. Davenpeck KL, Zagorski J, Schleimer RP, Bochner BS (1998) Lipopolysaccharide-induced leukocyte rolling and adhesion in the rat mesenteric microcirculation: regulation by glucocorticoids and role of cytokines. J Immunol 161:6861–6870

    PubMed  CAS  Google Scholar 

  52. Makita H, Nishimura N, Miyamoto K, et al (1998) Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med 158:573–579

    Article  PubMed  CAS  Google Scholar 

  53. Sundrani R, Easington CR, Mattoo A, Parillo JE, Hollenberg SM (2000) Nitric oxide synthase inhibition increases venular leukocyte rolling and adhesion in septic rats. Crit Care Med 28:2898–2903

    Article  PubMed  CAS  Google Scholar 

  54. Hogg JC, Doerschuk CM (1995) Leukocyte traffic in the lung. Annu Rev Physiol 57:97–114

    Article  PubMed  CAS  Google Scholar 

  55. Jaeschke H, Farhood A, Smith CW (1991) Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am J Physiol 261:G1051–G1056

    PubMed  CAS  Google Scholar 

  56. Doyle NA, Bhagwan SD, Meek BB, et al (1997) Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-deficient mice. J Clin Invest 99:526–533

    Article  PubMed  CAS  Google Scholar 

  57. Lentsch AB, Ward PA (2000) Regulation of inflammatory vascular damage. J Pathol 190:343–348

    Article  PubMed  CAS  Google Scholar 

  58. Fujita H, Morita I, Murota S (1991) Involvement of adhesion molecules (CD11a-ICAM-1) in vascular endothelial cell injury elicited by PMA-stimulated neutrophils. Biochem Biophys Res Commun 177:664–672

    Article  PubMed  CAS  Google Scholar 

  59. Phan SH, Gannon DE, Ward PA, Karmiol S (1992) Mechanism of neutrophil-induced xanthine dehydrogenase to xanthin oxidase conversion in endothelial cells: evidence of a role of elastase. Am J Respir Cell Mol Biol 6:270–278

    Article  PubMed  CAS  Google Scholar 

  60. Kvietys PR, Granger DN (1997) Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol 273:G1189–G1199

    PubMed  CAS  Google Scholar 

  61. Yoshida N, Cepinskas G, Granger DN, Anderson DC, Wolf RE, Kvietys PR (1995) Aspirininduced, neutrophil-mediated injury to vascular endothelium. Inflammation 19:297–312

    Article  PubMed  CAS  Google Scholar 

  62. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800

    PubMed  CAS  Google Scholar 

  63. Rosser D, Stiwill R, Jacobson D, Singer M (1996) Cardiorespiratory and tissue oxygen dose response to rat endotoxemia. Am J Physiol 271:H891–H895

    PubMed  CAS  Google Scholar 

  64. Gutierrez G, Lund N, Palizas F (1991) Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest 99:224–229

    Article  PubMed  CAS  Google Scholar 

  65. Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch IA (2000) Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med 28:2591–2594

    Article  PubMed  CAS  Google Scholar 

  66. Herrmann W, Ecker D, Quast S, Klieden M, Rose S, Marzi I (2000) Comparison of procalcitonon, sCD14 and interleukin-6 values in septic patients. Clin Chem Lab Med 38:41–46

    Article  PubMed  CAS  Google Scholar 

  67. Arnalich F, Garcia-Palomero E, Lopez J, et al (2000) Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis. Infect Immun 68:1942–1954

    Article  PubMed  CAS  Google Scholar 

  68. Vincent JL (1998) The available clinical tools — oxygen-derived variables, lactate, and pHi. In: Sibbald WJ, Messmer K, Fink MP (eds) Tissue Oxygenation in Acute Medicine. Springer, Heidelberg, pp 193–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sielenkämper, A.W., Ellis, C.G., Kvietys, P. (2002). The Microcirculation in Sepsis. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics