Skip to main content

Endothelial Cell Dysfunction and Abnormal Tissue Perfusion

  • Chapter
Mechanisms of Organ Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

Abstract

The vascular endothelium is a highly specialized tissue involved in modulating immune responses and vascular cell growth, and in regulating the level of hemostatic, inflammatory, and vasoactive agents in the blood (Table 1). Endothelial cells line vessels in every organ system and regulate the flow of nutrient substances, diverse biologically active molecules, and the blood cells themselves. This ‘gate-keeping’ role of the endothelium is effected through the presence of membrane-bound receptors for numerous molecules including proteins, lipid transporting particles, metabolites and hormones, as well as through specific junction proteins and receptors that govern cell-to-cell and cell-tomatrix interactions [1]. This feature explains why endothelium dysfunction and/or injury with subendothelium exposure facilitates leukocyte and platelet aggregation and aggravation of coagulopathy. Therefore, endothelial dysfunction and/or injury should favor impaired perfusion, tissue hypoxia and subsequent organ dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cines DB, Pollak ES, Buck CA, et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    PubMed  CAS  Google Scholar 

  2. Stefanec T (2000) Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease. Chest 117:841–854

    Article  PubMed  CAS  Google Scholar 

  3. Hecker M (2000) Endothelium-derived hyperpolarizing factor — fact or fiction?. News Physiol Sci 15:1–5

    PubMed  CAS  Google Scholar 

  4. Furchgott R, Zawadzki J (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  5. Makimattila S, Virkamaki A, Groop PH, et al (1996) Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 94: 1276–1282

    Article  PubMed  CAS  Google Scholar 

  6. Vakkilainen J, Makimattila S, Seppala-Lindroos A, et al (2000) Endothelial dysfunction in men with small LDL particles. Circulation 102: 716–721

    Article  PubMed  CAS  Google Scholar 

  7. Hingorani AD, Cross J, Kharbanda RK, et al (2000) Acute systemic inflammation impairs endothelium-dependent dilation in humans. Circulation 102:994–999

    Article  PubMed  CAS  Google Scholar 

  8. Granger HJ, Goodman AH, Cook Billy H (1975) Metabolic models of microcirculatory regulation. Fed Proc 34:2025–2030

    PubMed  CAS  Google Scholar 

  9. Samsel RW, Schumacker PT (1992) Pathologic supply dependence of oxygen utilization. In: Hall J, Schmidt GA, Hood LTH (eds) Principles of Critical Care Medicine. McGraw Hill, New York, pp 667–678

    Google Scholar 

  10. Pohl U (1990) Endothelial cells as a part of a vascular oxygen-sensing system: hypoxiainduced release of autacoids. Experientia 46:1175–1179

    Article  PubMed  CAS  Google Scholar 

  11. Pohl U, Busse R (1989) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 256:H1595–H1600

    PubMed  CAS  Google Scholar 

  12. Michiels C, Arnould T, Dieu M, Remacle J (1993) Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264:C866–C874

    PubMed  CAS  Google Scholar 

  13. Vallet B, Winn MJ, Asante NK, Cain SM (1994) Influence of oxygen on endothelium-derived relaxing factor nitric oxide and K+-dependent regulation of vascular tone. J Cardiovasc Pharmacol 25:595–602

    Article  Google Scholar 

  14. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180

    Article  PubMed  CAS  Google Scholar 

  15. Daut J, Maier-Rudolph W, Von Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    Article  PubMed  CAS  Google Scholar 

  16. Vallet B, Curtis SE, Guery B, et al. (1995) ATP-sensitive K+ channel blockade impairs oxygen extraction during progressive ischemia in pig hindlimb. J Appl Physiol 79:2035–2042

    PubMed  CAS  Google Scholar 

  17. Curtis SE, Vallet B, Winn MJ, Caufield JB, Cain SM (1995) Ablation of the vascular endothelium causes an oxygen extraction defect in canine skeletal muscle. J Appl Physiol 79:1352–1360

    Google Scholar 

  18. Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24:3–11

    Article  PubMed  CAS  Google Scholar 

  19. Jackson WF, Duling BR (1983) The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in vivo studies. Circ Res 53:515–525

    Article  PubMed  CAS  Google Scholar 

  20. Emerson GG, Segal SS (2000) Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 86:94–100

    Article  PubMed  CAS  Google Scholar 

  21. Segal SS (1991) Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. Am J Physiol 261:H180–H189

    Google Scholar 

  22. Fleming I (2000) Myoendothelial gap junctions. The gap is there, but does EDHF go through it?. Circ Res 86:249–250

    Article  PubMed  CAS  Google Scholar 

  23. Nevière R, Mathieu D, Chagnon JL, et al (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153:191–195

    Article  PubMed  Google Scholar 

  24. Springer T (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 1995;57:827–872

    Google Scholar 

  25. Gardinali M, Borrelli E, Chiara O, et al (2000) Inhibition of CD11b/CD18 complex prevents acute lung injury and reduces mortality after peritonitis in rabbits. Am J Respir Crit Care Med 161:1022–1029

    Article  PubMed  CAS  Google Scholar 

  26. Kuebler WM, Borges J, Sckell A, et al (2000) Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med 161:36–43

    Article  PubMed  CAS  Google Scholar 

  27. Varani J, Ward P (1994) Mechanisms of endothelial cell injury in acute inflammation. Shock 2:311–319

    Article  PubMed  CAS  Google Scholar 

  28. Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23:265–271

    Article  PubMed  CAS  Google Scholar 

  29. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R (2000) Microvascular response in patients with cardiogenic shock. Crit Care Med 28:1290–1294

    Article  PubMed  CAS  Google Scholar 

  30. Bombeli T, Mueller M, Haeberli A (1997) Anticoagulant properties of the vascular endothelium. Thromb Haemost 77:408–423

    PubMed  CAS  Google Scholar 

  31. Kirchhofer D, Tschopp TB, Hadvary P, et al (1994) Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. J Clin Invest 93:2073–2083

    Article  PubMed  CAS  Google Scholar 

  32. Papapetropoulos A, Piccardoni P, Cirino G, et al (1998) Hypotension and inflammatory cytokine gene expression triggered by factor Xa-nitric oxide signaling. Proc Natl Acad Sci USA 95:4738–4742

    Article  PubMed  CAS  Google Scholar 

  33. Yang Y, Loscalzo J (2000) Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide. Circulation 101:2144–2148

    Article  PubMed  CAS  Google Scholar 

  34. Reidy MA, Bowyer DE (1997) Scanning electron microscopy: morphology of aortic endothelium following injury by endotoxin and during subsequent repair. Atherosclerosis 26:319–328

    Article  Google Scholar 

  35. Leclerc J, Pu Q, Wiel E, Vallet B (2000) Vascular endothelial cell dysfunction in septic shock. Intensivmed 37:93–99

    Article  Google Scholar 

  36. Reidy MA, Schwartz SM. Endothelial injury and regeneration. IV. Endotoxin: a nondenuding injury to aortic endothelium (1983) Lab Invest 48:25–34

    Google Scholar 

  37. Young JS, Headrick JP, Berne RM (1991) Endothelial-dependent and-independent responses in the thoracic aorta during endotoxic shock. Circ Shock 35:25–30

    PubMed  CAS  Google Scholar 

  38. Wang P, Wood TJ, Zhou M, et al (1996) Inhibition of the biological activity of tumor necrosis factor maintains vascular endothelial cell function during hyperdynamic sepsis. J Trauma 40:694–701

    Article  PubMed  CAS  Google Scholar 

  39. Lee M, Schuessler G, Chien S (1988) Time dependent effects of endotoxin on the ultrastructure of the aortic endothelium. Artery 15:71–89

    PubMed  CAS  Google Scholar 

  40. Leclerc J, Pu Q, Corseaux D, et al (2000) A single endotoxin injection in the rabbit causes prolonged blood vessel dysfunction and a procoagulant state. Crit Care Med 28:3672–3678

    Article  PubMed  CAS  Google Scholar 

  41. Bajaj MS, Tricomi SM (1999) Plasma levels of the three endothelial-specific proteins von Willebrand factor, tissue factor pathway inhibitor, and thrombomodulin do not predict the development of acute respiratory distress syndrome. Intensive Care Med 25:1259–1266

    Article  PubMed  CAS  Google Scholar 

  42. Kayal S, Jais JP, Aguini N, Chaudière J, Labrousse J (1998) Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 157:776–784

    Article  PubMed  CAS  Google Scholar 

  43. Blann AD, Babbs C, Neuberger JM (1992) Endothelial cell damage in primary biliary cirrhosis: influence of cholestasis and immunological mechanisms. Clin Exp Immunol 90:88–92

    Article  PubMed  CAS  Google Scholar 

  44. Rubin DB, Wiener-Kronish JP, Murray JF, et al (1990) Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 86:474–480

    Article  PubMed  CAS  Google Scholar 

  45. Borchiellini A, Fijnvandraat K, ten Cate JW, et al (1996) Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of l-deamino-8-D-arginine vasopressin in humans. Blood 88:2951–2958

    PubMed  CAS  Google Scholar 

  46. Van Mourik JA, Boertjes R, Huisveld IA, et al (1999) von Willebrand factor propeptide in vascular disorders: A tool to distinguish between acute and chronic endothelial cell perturbation. Blood 94:179–185

    PubMed  Google Scholar 

  47. Parker JL, Adams HR (1993) Selective inhibition of endothelium-dependent vasodilatator capacity by Escherichia coli endotoxemia. Circ Res 72:539–551

    Article  PubMed  CAS  Google Scholar 

  48. Umans JG, Wylam ME. Umans JG, et al (1993) Effects of endotoxin in vivo on endothelial and smooth-muscle function in rabbit and rat aorta. Am Rev Respir Dis 148:1638–1645

    Article  PubMed  CAS  Google Scholar 

  49. Zhou M, Wang P, Chaudry IH (1993) Endothelial nitric oxide synthase is downregulated during hyperdynamic sepsis. Biochem Biophys Acta 1335:182–190

    Google Scholar 

  50. Yoshizumi M, Perrella MA, Burnett JC, et al (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73:205–209

    Article  PubMed  CAS  Google Scholar 

  51. Lu J-L, Schmiege LM, Kuo L, et al (1996) Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. Biochem Biophys Res Commun 225:1–5

    Article  PubMed  CAS  Google Scholar 

  52. Ma X, Tsao P, Lefer A (1991) Antibody to CD-18 exerts endothelial cell and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 88:1237–1243

    Article  PubMed  CAS  Google Scholar 

  53. Sessler C, Windsor A, Schwartz M (1995) Circulating ICAM-1 is increased in septic shock. Am J Respir Crit Care Med 151:1420–1427

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe S, Mukaida N, Ikeda N, et al (1995) Prevention of endotoxin shock by an antibody against leukocyte integrin beta 2 through inhibiting production and action of TNF. Int Immunol 7:1037–1046

    Article  PubMed  CAS  Google Scholar 

  55. Xu H, Gonzalo J, St Pierre Y, et al (1994) Leucocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 180:95–109

    Article  PubMed  CAS  Google Scholar 

  56. De Jonge E, Levi M, Van der Poll T (2000) Coagulation abnormalities in sepsis: relation with inflammatory responses. Curr Opin Crit Care 6:317–322

    Article  Google Scholar 

  57. Opal SM (2000) Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med 28:S77–S80

    Article  PubMed  CAS  Google Scholar 

  58. Opal SM, Palardy JE, Parejo NA, Creasey AA (2001) The activity of tissue factor pathway inhibitor inn experimental models of superantigen-induced shock and polymicrobial intraabdominal sepsis. Crit Care Med 29:13–17

    Article  PubMed  CAS  Google Scholar 

  59. Dhainaut JF, Vallet B (2001) Combined procoagulant and innate immune responses: toward more potent drugs in septic patients. Crit Care Med 29:205–206

    Article  PubMed  CAS  Google Scholar 

  60. Warr, TA, Rao LVM, Rapaport SI (1990) Disseminated intravascular coagulation in rabbits induced by administration of endotoxin or tissue factor: effect of anti-tissue factor antibodies and measurement of plasma extrinsic pathway inhibitor activity. Blood 75:1481–1489

    PubMed  CAS  Google Scholar 

  61. Rapaport S, Rao L (1992) Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler Thromb 12:1111–1121

    Article  PubMed  CAS  Google Scholar 

  62. Krafte-Jacobs B, Brilli R (1998) Increased circulating thrombomodulin in children with septic shock. Crit Care Med 26:933–938

    Article  PubMed  CAS  Google Scholar 

  63. Kidokoro A, Iba T, Fukunaga M, Yagi Y (1996) Alterations in coagulation and fibrinolysis during sepsis. Shock 5:223–228

    Article  PubMed  CAS  Google Scholar 

  64. Ten Cate H (2000) Pathophysiology of disseminated intravascular coagulation in sepsis. Crit Care Med 28:S9–S11

    Article  PubMed  Google Scholar 

  65. Van der Poll T, Buller H, ten Cate H, et al (1990) Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 322:1622–1627

    Article  PubMed  Google Scholar 

  66. Regoeczi E, Brain MC (1969) Organ distribution of fibrin in disseminated intravascular coagulation. Br J Haematol 17:73–81

    Article  PubMed  CAS  Google Scholar 

  67. Fourrier F, Chopin C, Goudemand J, et al (1992) Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 101:816–823

    Article  PubMed  CAS  Google Scholar 

  68. Gando S, Nakanishi Y, Tedo I (1995) Cytokines and plasminogen activator inhibitor-1 in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction syndrome. Crit Care Med 23:1835–1842

    Article  PubMed  CAS  Google Scholar 

  69. Creasey AA, Chang AC, Feigen L, Wun TC, Taylor FB, Hinshaw LB (1993) Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 91: 2850–2856

    Article  PubMed  CAS  Google Scholar 

  70. Kessler CM, Tang Z, Jacobs HM, Szymanski LM (1997) The suprapharmacologic dosing of antithrombin concentrate for Staphylococcus aureus-induced disseminated intravascular coagulation in guinea pigs: substantial reduction in mortality and morbidity. Blood 89:4393–401

    PubMed  CAS  Google Scholar 

  71. Carr C, Bild GS, Chang AC (1994) Recombinant E. Coli-derived tissue factor pathway inhibitor reduces coagulopathic and lethal effects in the baboon gram-negative model of septic shock. Circ Shock 44:126–137

    CAS  Google Scholar 

  72. Camerota AJ, Creasey AA, Patla V, et al (1998) Delayed treatment with recombinant human tissue factor pathway inhibitor improves survival in rabbits with gram-negative peritonitis. J Infect Dis 177:668–676

    Article  PubMed  CAS  Google Scholar 

  73. Taylor FB, Chang A, Esmon CT, D’Angelo A, Vigano-D’Angelo S, Blick KE (1987) Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 79:918–925

    Article  PubMed  CAS  Google Scholar 

  74. Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH, Hancock WW (1994) Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immunol 153:3664–3672

    PubMed  CAS  Google Scholar 

  75. Grinnell BW, Hermann RB, Yan SB (1994) Human protein C inhibits selectin-mediated cell adhesion: role of unique fucosylated oligosaccharide. Glycobiology 4:221–225

    Article  PubMed  CAS  Google Scholar 

  76. Jackson CV, Bailey BD, Shetler TJ (2000) Pharmacological profile of recombinant, human activated protein C (LY203638) in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 295:967–971

    PubMed  CAS  Google Scholar 

  77. Smith OP, White B, Vaughan D, et al (1997) Use of protein-C concentrate, heparin, and haemodiafiltration in meningococcus-induced purpura fulminans. Lancet 350:1590–1593

    Article  PubMed  CAS  Google Scholar 

  78. Fourrier F, Chopin C, Huart JJ, Runge I, Caron C, Goudemand J (1993) Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest 104:882–888

    Article  PubMed  CAS  Google Scholar 

  79. Baudo F, Caimi TM, de Cataldo F, et al (1998) Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or postsurgical complications: a controlled double-blind, randomized, multicenter study. Intensive Care Med 24:336–342

    Article  PubMed  CAS  Google Scholar 

  80. Eisele B, Lamy M, Thijs LG, et al. (1998) Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med 24:663–672

    Article  PubMed  CAS  Google Scholar 

  81. Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  82. Hamon M, Vallet B, Bauters C, et al (1994) Long-term oral administration of L-arginine reduces intimai thickening and enhances neoendothelium-dependent acetylcholine-induced relaxation after arterial injury. Circulation 90:1357–1362

    Article  PubMed  CAS  Google Scholar 

  83. Van Belle E, Vallet B, Auffray JL, et al (1996) NO synthesis is involved in structural and functional effects of ACE inhibitors in injured arteries. Am J Physiol 270:H298–H305

    PubMed  Google Scholar 

  84. Wiel E, Pu Q, Corseaux D, et al (2000) Effect of L-arginine on endothelial injury and hemostasis in rabbit endotoxin shock. J Appl Physiol 89:1811–1818

    PubMed  CAS  Google Scholar 

  85. Leclerc JF, Pu Q, Bordet R, Bauters C, Vallet B (1998) Endothelial cell dysfunction occurring during septic shock is prevented by angiotensin converting enzyme inhibitor. Am J Respir Crit Care Med 157:A101 (Abst)

    Article  Google Scholar 

  86. Pu Q, Wiel E, Bordet R, Jude B, Ezekowitz MD, Vallet B (1999) Glycoprotein IIB/IIIA inhibitor (AZ-1) can protect against endothelial cell dysfunction occurring in endotoxic shock. Am J Respir Crit Care Med 159:A499 (abstr)

    Google Scholar 

  87. Smith R, Palmer R, Moncada S (1991) Coronary vasodilatation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexamethasone. Br J Pharmacol 140:5–6

    Article  Google Scholar 

  88. Liibbe A, Garrison R, Cryer H, et al (1992) EDRF as a possible mediator of sepsis-induced arteriolar dilatation in skeletal muscle. Am J Physiol 262:H880–H887

    Google Scholar 

  89. Schneider F, Schott C, Stoclet J, et al (1992) L-arginine induces relaxation of small mesenteric arteries from endotoxin-treated rats. Eur J Pharmacol 211:269–272

    Article  PubMed  CAS  Google Scholar 

  90. Wang P, Ba ZF, Chaudry IH (1995) Endothelium-dependent relaxation is depressed at the macro-and microcirculatory levels during sepsis. Am J Physiol 269:R988–R994

    PubMed  CAS  Google Scholar 

  91. Lam C, Tyml K, Martin C, et al (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  92. Hoffmann JN, Vollmar B, Inthorn D, Schilberg FW, Menger MD (1999) A chronic model for intravital microscopic study of microcirculatory disorders and leukocyte/endothelial cell interaction during normotensive endotoxemia. Shock 12:355–364

    Article  PubMed  CAS  Google Scholar 

  93. Bredle DL, Samsel RW, Schumacker PT, Cain SM (1989) Critical 02 delivery to skeletal muscle at high and low PO2 in endotoxemic dogs. J Appl Physiol 66:2553–2558

    PubMed  CAS  Google Scholar 

  94. Bredle DL, Cain SM (1991) Systemic and muscle oxygen uptake/delivery after dopexamine infusion in endotoxic dogs. Crit Care Med 19:198–204

    Article  PubMed  CAS  Google Scholar 

  95. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:793–800

    PubMed  CAS  Google Scholar 

  96. Tugtekin I, Theisen M, Matejovic M, et al (2000) Endotoxin-induced ileal mucosal acidosis is associated with impaired villus microcirculation in pigs. Prog Appl Microcirc 24:000–000

    Article  Google Scholar 

  97. Yamashita T, Kawashina S, Ohashi Y (2000) Resistance to endotoxin shock in transgenic mice overexpressing endothelial nitric oxide synthase. Circulation 101:931–937

    Article  PubMed  CAS  Google Scholar 

  98. Shindo T, Kurihara H, Maemura K, et al (2000) Hypotension and resistance to lipopolysaccharide-induced shock in transgenic mice overexpressing adrenomedullin in their vasculature. Circulation 101:2309–2316

    Article  PubMed  CAS  Google Scholar 

  99. Bhagat K, Collier J, Vallance P (1996) Local venous responses to endotoxin in humans. Circulation 94:490–497

    Article  PubMed  CAS  Google Scholar 

  100. Bhagat K, Moss R, Collier J, et al (1996) Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction?. Cardiovasc Res 32:822–829

    PubMed  CAS  Google Scholar 

  101. Nelson DP, Samsel RW, Wood LDH, Schumacker PT (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64:2410–2419

    PubMed  CAS  Google Scholar 

  102. Winn MJ, Ku DD (1992) Effects of regional ischaemia, with or without reperfusion, on endothelium dependent coronary relaxation in the dog. Cardiovasc Res 26:250–265

    Article  PubMed  CAS  Google Scholar 

  103. Pinsky MR (1995) Regional blood flow distribution. In: Pinsky MR, Dhainaut JF, Artigas A (eds) The Splanchnic Circulation: No Longer a Silent Partner. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  104. Motterlini R, Kerger H, Green CJ, Winslow RM, Intaglietta M (1998) Depression of endothelial and smooth muscle cell oxygen consumption by endotoxin. Am J Physiol 275:H776–H782

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vallet, B., Wiel, E., Rodie-Talbère, PA. (2002). Endothelial Cell Dysfunction and Abnormal Tissue Perfusion. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics