Skip to main content

Organ-Organ Interactions in Multiple Organ Failure

  • Chapter
Mechanisms of Organ Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

Abstract

Multiple organ failure (MOF) is just thirty years old. Tilney and colleagues were the first to describe the syndrome as a lethal consequence of surgery to repair abdominal aortic aneurysms [2]. Despite the timely and appropriate application of organ support, affected patients could not be rescued. Frustration in this field persists. The purpose of this chapter is to explore how interactions among the vital organs may regulate function and, reciprocally, how functions may regulate those interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henderson LJ, Palmer WW (1914) On the several factors of acid secretion. J Biol Chem 17:305–315

    CAS  Google Scholar 

  2. Tilney NL, Bailey GL, Morgan AP (1973) Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care. Ann Surg 178:117–122

    Article  PubMed  CAS  Google Scholar 

  3. Bernard C (1879) Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Végétaux. JB Balliere, Paris

    Book  Google Scholar 

  4. Einstein A (1905) Ãœber einen die erzeugung und Verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik 17:132

    Article  CAS  Google Scholar 

  5. Schrodinger E (1945) What is Life? The Physical Aspect of the Living Cell. Macmillan, New York

    Google Scholar 

  6. Cowan G (1994) Opening Remarks. In: Cowan G, Pines D, Meltzer D (eds) Complexity: Metaphors, Models and Reality. Addison-Wesley, Boston, p. 2

    Google Scholar 

  7. Wolfe EL, Barger CA, Benison S (2000) Walter B. Cannon, Science and Society. Harvard University Press, Boston, p 162

    Google Scholar 

  8. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116

    Article  PubMed  CAS  Google Scholar 

  9. Schäfer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392:239–240

    Article  PubMed  Google Scholar 

  10. Müller EE, Locatelli V, Cocchi D (1999) Neuroendocrine control of growth hormone secretion. Physiol Rev 79:511–607

    PubMed  Google Scholar 

  11. Fry DE, Pearlstein L, Fulton RL, Polk HC Jr (1980) Multiple system organ failure; the role of uncontrolled infection. Arch Surg 115:136–140

    Article  PubMed  CAS  Google Scholar 

  12. Groeneveld ABJ, Schneider AJ, Thijs LG (1991) Cardiac alteration in septic shock: pathophysiology, diagnosis, prognostic and therapeutic implications. In: Vincent JL (ed) Update in Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp: 126–136

    Google Scholar 

  13. Parrillo JE (1993) Pathogenic mechanisms of septic shock. N Engl J Med 328:1471–1477

    Article  PubMed  CAS  Google Scholar 

  14. Revelly JP, Ayuse T, Brienza N, Robotham JL (1995) Dysregulation of the veno-arterial response in the superior mesenteric artery during endotoxic shock. Crit Care Med 23: 1519–1527

    Article  PubMed  CAS  Google Scholar 

  15. Godin PJ, Fleisher LA, Eidsath A, et al (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 24:1117–1124

    Article  PubMed  CAS  Google Scholar 

  16. Bunnell E, Lynn M, Habet K, et al (2000) A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia. Crit Care Med 28: 2713–2720

    Article  PubMed  CAS  Google Scholar 

  17. Gutierrez G, Marini C, Acero AL, Lund N (1990) Skeletal muscle PO2 during hypoxemia and isovolemic anemia. J Appl Physiol 68:2047–2053

    PubMed  CAS  Google Scholar 

  18. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  19. Shepherd AP, Kiel JW (1992) A model of counter-current shunting of oxygen in the intestinal villus. Am J Physiol 262:H1136–H1142

    PubMed  CAS  Google Scholar 

  20. Hiltebrand LB, Krejci V, Banic A, Erni D, Wheatley AM, Sigurdsson GH (2000) Dynamic study of the distribution of microcirculatory blood flow in multiple splanchnic organs in septic shock. Crit Care Med 28:3233–3241

    Article  PubMed  CAS  Google Scholar 

  21. Cardenas A, Uriz J, Gines P, Arroyo V (2000) Hepatorenal syndrome. Liver Transplant 6: S63–S71

    Article  Google Scholar 

  22. Gines P, Arroyo V (1999) Hepatorenal syndrome. J Am Soc Nephrol 10:1833–1839

    PubMed  CAS  Google Scholar 

  23. Rydell R, Hoffbauer FW (1956) Multiple pulmonary arteriovenous fistulas in juvenile cirrhosis. Am J Med 21:450–459

    Article  PubMed  Google Scholar 

  24. Scott VL, Dodson SF, Kang Y (1900) The hepatopulmonary syndrome. Surg Clin North Am 79:23–41

    Article  Google Scholar 

  25. Krowka MJ (2000) Hepatopulmonary syndromes. Gut 46:1–4

    Article  PubMed  CAS  Google Scholar 

  26. Duncan BW, Kneebone JM, Chi EY, et al (1999) A detailed histologic analysis of pulmonary arteriovenous malformations in children with cyanotic congenital heart disease. J Thorac Cardiovasc Surg 117:931–938

    Article  PubMed  CAS  Google Scholar 

  27. Hasselgren PO, James JH, Benson DW, et al (1989) Total and myofibrillar protein breakdown in different types of rat skeletal muscle: effects of sepsis and regulation by insulin. Metabolism 38:634–640

    Article  PubMed  CAS  Google Scholar 

  28. Vary TC, Kimball SR (1992) Sepsis-induced changes in protein synthesis: differential effects on fast-and slow-twitch muscles. Am J Physiol 262:C1513–C1519

    PubMed  CAS  Google Scholar 

  29. Streat SJ, Plank LD, Hill GL (2000) Overview of modern management of patients with critical injury and severe sepsis. World J Surg 24:655–663

    Article  PubMed  CAS  Google Scholar 

  30. Planck LD, Hill GL (2000) Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg 24:630–638

    Article  Google Scholar 

  31. Chen MD, Ordog T, O’Byrne KT, Goldsmith JR, Connaughton MA, Knobil E (1996) The insulin hypoglycemia-induced inhibition of gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: roles of vasopressin and corticotropin-releasing factor. Endocrinology 137:2012–2021

    Article  PubMed  CAS  Google Scholar 

  32. Goldsmith SR, Dodge D, Cowley AW (1989) The effect of moderate hypotension on arginine vasopressin levels in normal humans. Am J Med Sci 298:295–298

    Article  PubMed  CAS  Google Scholar 

  33. Chapleau MW, Hajduczok G, Abboud FM (1989) Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol 256: H1735–H1741

    PubMed  CAS  Google Scholar 

  34. Buijk SE, Bruining HA (1998) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 98:187

    Article  PubMed  CAS  Google Scholar 

  35. Landry DW, Levin HR, Gallant EM, et al (1997) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95:1122–1125

    Article  PubMed  CAS  Google Scholar 

  36. Lim TW, Lee S, NG KS (2000) Vasopressin effective in reversing catecholamine-resistant vasodilatory shock. Anaesth Intensive Care 28:313–317

    PubMed  CAS  Google Scholar 

  37. Schwartz J, Keil LC, Maselli J, Reid IA (1983) Role of vasopressin in blood pressure regulation during adrenal insufficiency. Endocrinology 112:234–238

    Article  PubMed  CAS  Google Scholar 

  38. Rozenfeld V, Cheng JW (2000) The role of vasopressin in the treatment of vasodilation in shock states. Ann Pharmacother 34:250–254

    Article  PubMed  CAS  Google Scholar 

  39. Romand JA, Treggiari-Venzi M (1999) Is vasopressin an ideal vasopressor to treat hypotension in septic shock? Intensive Care Med 25:763–764

    Article  PubMed  CAS  Google Scholar 

  40. Malcolm DS, Zaloga GP, Holaday JW (1989) Calcium administration increases the mortality of endotoxic shock in rats. Crit Care Med 17:900–903

    Article  PubMed  CAS  Google Scholar 

  41. Carlstedt F, Eriksson M, Kiiski R, Larsson A, Lind L (2000) Hypocalcemia during porcine endotoxemic shock: effects of calcium administration. Crit Care Med 28:2909–2914

    Article  PubMed  CAS  Google Scholar 

  42. Suter PM (2000) Increasing arterial oxygenation with knobs and tricks: lipstick cosmetics or real improvement of outcome? Crit Care Med 28:3083–3084

    Article  PubMed  CAS  Google Scholar 

  43. Glass L, Mackey M (1988): From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton

    Google Scholar 

  44. Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol 266:H1643–H1656

    PubMed  CAS  Google Scholar 

  45. Silipo R, Deco G, Vergassola R, Gremigni C (1999) A characterization of HRV’s nonlinear hidden dynamics by means of Markov models. IEEE Trans Biomed Eng 46:978–986

    Article  PubMed  CAS  Google Scholar 

  46. Pincus SM (1994) Greater signal regularity may indicate increased system isolation. Math Biosci 122:161–181

    Article  PubMed  CAS  Google Scholar 

  47. Pincus SM (1994) Quantification of evolution from order to randomness in practical time series analysis. Methods Enzymol 240:68–89

    Article  PubMed  CAS  Google Scholar 

  48. Kresh JY, Izrailtyan I (1998) Evolution in functional complexity of heart rate dynamics: a measure of cardiac allograft adaptability. Am J Physiol 275:R720–R727

    PubMed  CAS  Google Scholar 

  49. Toweill D, Sonnenthal K, Kimberly B, Lai S, Goldstein B (2000) Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Crit Care Med 28:2051–2057

    Article  PubMed  CAS  Google Scholar 

  50. Annane D, Trabold F, Sharshar T, et al (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160:458–465

    Article  PubMed  CAS  Google Scholar 

  51. Goldstein B, Mickelsen D, Want A, Tipton R, Cox C, Woolf PD (1999) Effect of N(G)-nitro-L-arginine methyl ester on autonomic modulation of heart rate variability during hypovolemic shock. Crit Care Med 27:2239–2245

    Article  PubMed  CAS  Google Scholar 

  52. Tang GJ, Kuo CD (1996) Heart rate variability correlates negatively with cardiac index in patients with sepsis. Intensive Care Med 22:514

    Article  PubMed  CAS  Google Scholar 

  53. Goldstein B, Toweill D, Lai S, Sonnenthal K, Kimberly B (1998) Uncoupling of the autonomic and cardiovascular systems in acute brain injury. Am J Physiol 275:R1287–R1292

    PubMed  CAS  Google Scholar 

  54. Wada T, Ono K, Hadama T, Uchida Y, Shimada T, Arita M (1999) Detection of acute cardiac rejection by analysis of heart rate variability in heterotopically transplanted rats. J Heart Lung Transplant 18:499–509

    Article  PubMed  CAS  Google Scholar 

  55. Stys A, Stys T (1998) Current clinical applications of heart rate. Clin Cardiol 21:719–724

    Article  PubMed  CAS  Google Scholar 

  56. Winchell RJ, Hoyt DB (1996) Spectral analysis of heart rate variability in the ICU: a measure of autonomic function. J Surg Res 63:11–6

    Article  PubMed  CAS  Google Scholar 

  57. Fleisher LA, Fleckenstein JF, Frank SM, Thuluvath PJ (2000) Heart rate variability as a predictor of autonomic dysfunction in patients awaiting liver transplantation. Dig Dis Sci 45:340–344

    Article  PubMed  CAS  Google Scholar 

  58. Pincus SM (2000) Orderliness of hormone release. Novartis Found Symp 227:82–96

    Article  PubMed  CAS  Google Scholar 

  59. Pincus SM, Keefe DL (1992) Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 262:E741–E754

    PubMed  CAS  Google Scholar 

  60. Hollingdal M, Juhl CB, Pincus SM, et al (2000) Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes 49:1334–1340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wizorek, J.J., Buchman, T.G. (2002). Organ-Organ Interactions in Multiple Organ Failure. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics