Skip to main content

Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights

  • Conference paper
Meshfree Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

We use Maz’ya and Schmidt’s theory of approximate approximation to devise a fast and accurate approximate moving least-squares approximation method which does not require the solution of any linear systems. Since we use compactly supported weight functions, the remaining summation is also efficient. We compare our new algorithm with three other approximation methods based on compactly supported radial functions: multilevel interpolation, the standard moving least-squares approximation method, and a multilevel moving least-squares algorithm. A multilevel approximate moving least-squares approximation algorithm is also included.

Supported by the National Science Foundation under grant DMS-0073636

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bos, L. P., Šalkauskas, K.: Moving least-squares are Backus-Gilbert optimal. J. Approx. Theory 59 (1989) 267-275

    Article  MathSciNet  MATH  Google Scholar 

  2. Fasshauer, G. E.: Matrix-free multilevel moving least-squares methods. Approximation Theory X: Wavelets, Splines, and Applications, C. K. Chui, L. L. Schu-maker, J. Stöckler (eds.),Vanderbilt University Press (2002) 271–281

    Google Scholar 

  3. Fasshauer, G. E.: High-order moving least-squares approximation via fast radial Laguerre transforms. Illinois Institute of Technology (in preparation)

    Google Scholar 

  4. Fasshauer, G. E., Jerome, J. W.: Multistep approximation algorithms: Improved convergence rates through postconditioning with smoothing kernels: Adv. in Comput. Math. 10 (1999) 1–27

    MathSciNet  MATH  Google Scholar 

  5. Ivanov, T., Maz’ya, V., Schmidt, G.: Boundary layer approximate approximations and cubature of potentials in domains. Adv. in Comput. Math. 10 (1999) 311–342

    MathSciNet  MATH  Google Scholar 

  6. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comp. 37 (1981) 141–158

    Article  MathSciNet  MATH  Google Scholar 

  7. Levin, D.: The approximation power of moving least-squares. Math. Comp. 67 (1998) 1517–1531

    Article  MathSciNet  MATH  Google Scholar 

  8. 8. Li, S., Liu, W. K.: Meshfree and particle methods and their applications. Applied Mechanics Review (to appear)

    Google Scholar 

  9. Maz’ya, V., Schmidt, G.: On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16 (1996) 13–29

    Article  MathSciNet  MATH  Google Scholar 

  10. Maz’ya, V-, Schmidt, G.: On quasi-interpolation with non-uniformly distributed centers on domains and manifolds. J. Approx. Theory 110 (2001) 125–145

    Article  MathSciNet  MATH  Google Scholar 

  11. McLain, D. H.: Drawing contours from arbitrary data points. Comput. J. 17 (1974) 318–324

    Article  Google Scholar 

  12. Schaback, R.: Creating surfaces from scattered data using radial basis functions. Mathematical Methods for Curves and Surfaces, Morten Dæhlen, Tom Lyche, Larry L. Schumaker (eds.), Vanderbilt University Press (1995) 477–496

    Google Scholar 

  13. Schaback, R.: On the efficiency of interpolation by radial basis functions. Surface Fitting and Multiresolution Methods, A. LeMéhauté, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press (1997), 309–318

    Google Scholar 

  14. Schaback, R., Wendland, H.: Characterization and construction of radial basis functions. Multivariate approximation and applications, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus (eds.), Cambridge Univ. Press, Cambridge (2001), 1–24

    Chapter  Google Scholar 

  15. Shepard, D.: A two dimensional interpolation function for irregularly spaced data. Proc. 23rd Nat. Conf. ACM (1968) 517–523

    Google Scholar 

  16. Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21 (2001) 285–300

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fasshauer, G.E. (2003). Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics