Skip to main content

SPH Simulations of MHD Shocks Using a Piecewise Constant Smoothing Length Profile

  • Conference paper
Meshfree Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

Concerns regarding efficiency and accuracy of Smoothed Particle Hydrodynamics (SPH) compared to modern grid-based methods have been raised. Likewise, the extension of SPH to MHD problems has proven to be a challenge. In an attempt to improve the ability of SPH to treat shocks in general, and MHD shocks in particular, a modified version of SPH called Regularized Smoothed Particle Hydrodynamics (RSPH) has been presented [1]. This method allows a piecewise constant smoothing length profile to be used. Furthermore, the smoothing length profile is optimized at temporal intervals using a mass, momentum and internal erergy conserving regularization process. In this paper, we examine more closely the abilities of the RSPH method to treat MHD shocks. We present a simple stability analysis, as well as results from MHD shock tests in one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Børve S., Omang M., Traisen J. (2001) Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks. Astrophys. J. 561, 82–93

    Article  Google Scholar 

  2. Gingold R. A., Monaghan, J. J. (1977) Smoothed Particle Hydrodynamics: Theory and Applications to Non-spherical Stars. Mon. Not. R. Astron. 181, 375–389

    MATH  Google Scholar 

  3. Evrard A. E. (1988) Beyond N-body — 3D Cosmological Gas Dynamics. Mon. Not. R. Astron. 235, 911–934

    MATH  Google Scholar 

  4. Hernquist L., Katz N. (1989) TREESPH — A Unification of SPH with the Hierarchical Tree Method. Astrophys. J. Suppl. Ser. 70, 419–446

    Article  Google Scholar 

  5. Monaghan J. J. (1985) Particle Methods for Hydrodynamics. Comput. Phys. Rep. 3, 72–124

    Article  Google Scholar 

  6. Hernquist L. (1993) Some Cautionary Remarks About Smoothed Particle Hydrodynamics. Astrophys. J. 404, 717–722

    Article  Google Scholar 

  7. Steinmetz M., Müller E. (1993) On the Capabilities and Limits of Smoothed Particle Hydrodynamics. Astron. Astrophys. 268, 391–410

    Google Scholar 

  8. Monaghan J. J. (1992) Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574

    Article  Google Scholar 

  9. Phillips G. J, Monaghan, J. J. (1985) A Numerical Method for Three-dimensional Simulations of Collapsing, Isothermal, Magnetic Gas Clouds. Mon. Not. R. Astron. 216, 883–895

    MATH  Google Scholar 

  10. Dolag K., Bartelmann M., Lesch H. (1999) SPH Simulations of Magnetic Fields in Galaxy Clusters. Astron. Astrophys. 348, 351–363

    Google Scholar 

  11. Morris J. P. (1996) A Study of the Stability Properties of Smooth Particle Hydrodynamics. Publ. Astron. Soc. Pac. 13, 97–102

    Google Scholar 

  12. Ryu D., Jones T. W. (1995) Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for One-dimensional Flow. Astrophys. J. 442, 228–258

    Article  Google Scholar 

  13. Stellingwerf R. F., Peterkin R. E. Jr. (1994) Smooth Particle Magnetohydrodynamics. Mem. Soc. Astron. Italiana. 65, 991–1011

    Google Scholar 

  14. Dungey J. W. (1961) Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 6, 47–48

    Article  Google Scholar 

  15. Spreiter J. R., Summers A. L., Alksne A. Y. (1966) Hydromagnetic Flow Around the Magnetosphere. Planet. Space Sci. 14, 223–253

    Article  Google Scholar 

  16. Usadi A., Kageyama A., Watanabe K., Sato T. (1993) A Global Simulation of the Magnetosphere With a Long Tail: Southward and Northward Interplanetary Magnetic Field. J. Geophys. Res. 98, 7503–7517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Børve, S., Omang, M., Trulsen, J. (2003). SPH Simulations of MHD Shocks Using a Piecewise Constant Smoothing Length Profile. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics