Skip to main content

Survey of Multi-Scale Meshfree Particle Methods

  • Conference paper
Meshfree Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

A multiscale meshfree particle method is developed, which includes recent advances in SPH and other meshfree research efforts. Key features will include linear consistency, stability, and both local and global conservation properties. In addition, through the incorporation of Reproducing Kernal Particle Method (RKPM), standard moving least squares (MLS) enhancement and wavelet techniques, the method have the flexibility of resolving multiple scales in the solution of complex, multiple physics processes. We present the application of this approach in the following areas: 1) simulations on propagation of dynamic fracture and shear band; 2) impact and penetration; 3) fluid dynamics and 4) nano-mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bar-Lev and H.T. Yang. Initial flow field over an impulsively started circular cylinder. Journal of Fluid Mechanics, 72:625–647, 1975.

    Article  Google Scholar 

  2. T. Belytschko and T. Tabbara. Dynamic fracture using efg. IJNME, 39:3, 1996.

    Article  Google Scholar 

  3. J.S. Chen, C. Pan, C.T. Wu, and W.K. Liu. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 139:195–227, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  4. W.M. Collins and S.C.R. Dennis. The initial flow past an impulsively started circular cylinder. Quarterly Journal of Mechanics and Applied Mathematics, 26:53–75, 1973a.

    Article  MATH  Google Scholar 

  5. W.M. Collins and S.C.R. Dennis. Flow past an impulsively started circular cylinder. Journal of Fluid Mechanics, 60:105–127, 1973b.

    Article  MATH  Google Scholar 

  6. S. Hao, W.K. Liu, P. Klein, and D. Qian. Multi-scale damage model, manuscript to be submitted, 2001.

    Google Scholar 

  7. S. Hao, H. Park, and W.K. Liu. Moving particle finite element method, submitted, 2001.

    Google Scholar 

  8. S. Jun, W.K. Liu, and T. Belytschko. Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41:137–166, 1998.

    Article  MATH  Google Scholar 

  9. J.F. Kalthoff and S. Winkler. Failure mode transition at high rates of shear loading. C. Y. Chiem, H.D. Kunze and L. W. Meyer, edts., Impact Loading and Dynamic Behavior of Materials, 1:185–195, 1987a.

    Google Scholar 

  10. P.A. Klein. Technical Report. Sandia National Laboratories, 1999.

    Google Scholar 

  11. S. Li and W.K. Liu. Meshfree and particle methods and their applications. accepted for publication in Applied Mechanics Review, 2001.

    Google Scholar 

  12. 12. S. Li, W.K. Liu, D. Qian, P. Guduru, and R. Rosakis. Dynamic shear band propogation and micro-structure of adiabatic shear band. Comp. Meth. In Applied Mech. Engrg, in press, 2001.

    Google Scholar 

  13. S. Li, W.K. Liu, A. Rosakis, T. Belytschko, and W. Hao. Meshfree galerkin simulations of dynamic shear band propagation and failure mode transition. accepted for publication in Journal of Mechanics and Physics of Solids, 2000.

    Google Scholar 

  14. W.K. Liu and Y. Chen. Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Engineering, 21:901-931, 1995.

    Article  MATH  Google Scholar 

  15. W.K. Liu, Y. Chen, R.A. Uras, and C.T. Chang. Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering, 139:91–158, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. W.K. Liu and S. Jun. Multiple scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41:1339–1362, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. W.K. Liu, S. Jun, J. Adee, and T. Belytschko. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38:1655–1680, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. W.K. Liu, S, Jun, D.T. Sihling, Y. Chen, and W. Hao. Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal of Numerical Method in Fluids, 24:1391–1415, 1997.

    Article  MATH  Google Scholar 

  19. W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, 20:1081-1106, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  20. W.K. Liu, R.A. Uras, and Y. Chen. Enrichment of the finite element method with the reproducing kernel particle method. Journal of Applied Mechanics, ASME, 64:861–870, 1997.

    Article  MATH  Google Scholar 

  21. J.J. Mason, A.J. Rosakis, and G. Ravinchandran. Full field measurement of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch. Journal of Mechanics and Physics of Solids, 42:1679–1697, 1994.

    Article  Google Scholar 

  22. D. Qian, W.K. Liu, and R.S. Ruoff. Mechanics of nanotubes filled with fullerenes. accepted for publication in Journal of Physical Chemistry B, 2001.

    Google Scholar 

  23. K. Ravi-Chandar. On the failure mode transition in polycarbonate dynamic mixed-mode loading. International Journal of Solids and Structures, 32:925–938, 1995.

    Article  MATH  Google Scholar 

  24. A.J. Rosakis. Private communication. 2000,

    Google Scholar 

  25. J. Sloan, R.E. Dunin-Borkowski, J.L. Hutchinson, K.S. Coleman, V.C. Williams, J.B. Claridge, A.P.E. York, C. Xu, S.R. Bailey, G. Brown, S. Fridrichs, and M.L.H. Green. The size distribution, imaging and obstructing properties of c60 and higher fullerenes formed within arc-growth single walled carbon nanotubes. Chemical Physics Letters, 316:191–198, 2000.

    Article  Google Scholar 

  26. B.W. Smith, M. Monthoux, and D.E. Luzzi. Encapsulated c60 in carbon nanotubes. Nature, 336:323, 1998.

    Article  Google Scholar 

  27. G. J. Wagner and W.K. Liu. Application of essential boundary conditions in mesh-free methods: a corrected collocation method. International Journal for Numerical Methods in Engineering, 47:1367–1379, 2000.

    Article  MATH  Google Scholar 

  28. G.J. Wagner and W.K. Liu. Hierachical enrichment for bridging scales and meshfree boundary conditions. International Journal for Numerical Methods in Engineering, 50:507–524, 2000.

    Article  Google Scholar 

  29. M.F. Yu, M.J. Dyer, D. Qian, W.K. Liu, and R.S. Ruoff. Locked twist in multi-walled carbon nanotube ribbons, accepted for publication in Physical Review B, Rapid Communications, 2001.

    Google Scholar 

  30. L.T. Zhang, G.J. Wagner, and W.K. Liu. A parallelized meshfree method with boundary enrichment for large-scale cfd. submitted to Journal of Computational Physics, 2000.

    Google Scholar 

  31. Y. Zhang, S. Iijima, Z. Shi, and Z. Gu. Defects in arc-discharg-produced single-walled carbon nanotubes. Philosophical Magazine Letters, 79:473–479, 1999.

    Article  Google Scholar 

  32. M. Zhou, A.J. Rosakis, and G. Ravichandran. Dynamically propagating shear bands in impact-loaded prenotched plates -i, experimental investigations of temperature signatures and propagation speed. Journal of Mechanics of Physics and Solids, 44:981–1006, 1996a.

    Article  Google Scholar 

  33. M. Zhou, A.J. Rosakis, and G. Ravichandran. Dynamically propagating shear bands in impact-loaded prenotched plates -ii, numerical simulations. Journal of Mechanics of Physics and Solids, 44:1007–1032, 1996b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L.T., Liu, W.K., Li, S.F., Qian, D., Hao, S. (2003). Survey of Multi-Scale Meshfree Particle Methods. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics