Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

In this article, finite volume discretizations of hyperbolic conservation laws are considered, where the usual triangulation is replaced by a partition of unity on the computational domain. In some sense, the finite volumes in this approach are not disjoint but are overlapping with their neighbors. This property can be useful in problems with time dependent geometries: while the movement of grid nodes can have unpleasant effects on the grid topology, the meshfree partition of unity approach is more flexible since the finite volumes can arbitrarily move on top of each other. In the presented approach, the algorithms of classical and meshfree finite volume method are identical - only the geometrical coefficients (cell volumes, cell surfaces, cell normal vectors) have to be defined differently. We will discuss two such definitions which satisfy certain stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chainais-Hillairet, C: Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. M2AN 33 (1999) 129–156.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cockourn, B., Coquel, F., Lefloch, P.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63 (1994) 77–103

    Article  Google Scholar 

  3. Eymard, R., Gallouët, T.: Convergence d’un schéma de type éléments finis -volumes finis pour un système formé d’une équation elliptique et d’une équation hyperbolique. M2AN, Modélisation mathématique et analyse numérique, 27 (1993) 843–862

    MATH  Google Scholar 

  4. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences 118, Springer (1996)

    Google Scholar 

  5. Hietel, D., Steiner, K., Struckmeier, J.: A finite-volume particle method for compressible flows. Math. Models Methods Appl. Sci. 10 (2000) 1363–1382

    Article  MathSciNet  Google Scholar 

  6. Junk, M., Struckmeier, J.: Consistency analysis for mesh-free methods for conservation laws. AG Technomathematik, Universität Kaiserslautern, preprint 226 (2000)

    Google Scholar 

  7. Keck, R.: PhD Thesis, Universität Kaiserslautern, in preparation.

    Google Scholar 

  8. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley Teubner (1997)

    Google Scholar 

  9. Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. Proceedings of A.C.M National Conference (1968) 517-524

    Google Scholar 

  10. Teleaga, D.: Numerical studies of a finite-volume particle method for conservation laws. Master thesis, Universität Kaiserslautern, 2000.

    Google Scholar 

  11. Vila, J.-P.: Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. M2AN 28 (1994) 267-295

    MathSciNet  MATH  Google Scholar 

  12. Vovelle, J.: Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math., Online First Publications (2001)

    Google Scholar 

  13. Yang, Z.: Efficient Calculation of Geometric Parameters in the Finite Volume Particle Method. Master thesis, Universität Kaiserslautern, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Junk, M. (2003). Do Finite Volume Methods Need a Mesh?. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics