Skip to main content

Abstract

The rhizosphere is an ecological concept that focuses on plant roots. It includes both the biological and physical components near, on, and within the root [9]. Traditionally bacteria, fungi, invertebrate animals and, of course, the root itself have been studied as biological factors affecting this zone. Agriculturists in particular have been aware of how different management activities, such as cultivation, affect organisms around the root, and they often have optimized their cultural practices to promote root and plant growth. To the extent that such persons considered how their activities influenced the availability of mineral nutrients, then some attention has been paid for many years to rhizosphere chemistry. In actual fact, however, it has only been recently that scientists have defined molecules produced by plants and bacteria which control ecologically important events in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht J, Yoder JI, Phillips DA (1999) Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119:585–591

    Article  PubMed  CAS  Google Scholar 

  2. Allen NS, Bennet MN, Cox DN, Shipley A, Ehrhardt DW, Long SR (1994) Effects of Nod factors on alfalfa root hair Ca++ and H+ currents and on cytoskeletal behavior. In: Daniel MJ, Downie JA, Osbourne AE (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Kluwer, Dordrecht, pp 107–114

    Chapter  Google Scholar 

  3. Azaizeh HA, Neumann G, Marschner H (1995) Effects of thiamine (vitamin B1) application on bulk soil and rhizosphere microorganisms and on its release from bean (Phaseolus vulgaris L.) seedlings. Z Pflanzenernahr Bodenkunde 158:549–556

    CAS  Google Scholar 

  4. Azaizeh HA, Neumann G, Marschner H (1996) Effects of thiamine and nitrogen fertilizer form on the number of N2-fixing and total bacteria in the rhizosphere of maize plants. Z Pflanzenernaehr Bodenkde 159:183–188

    Article  CAS  Google Scholar 

  5. Barz W (1970) Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745–1749

    Article  CAS  Google Scholar 

  6. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825

    PubMed  Google Scholar 

  7. Béguiristain T, Cote R, Rubini P, Jay-Allemand C, Lapeyrie F (1995) Hypaphorine accumulation in hyphae of the ectomycorrhizal fungus Pisolithus tinctorius. Phytochemistry 40:1089–1091

    Article  Google Scholar 

  8. Béguiristain T, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytol 136:525–532

    Article  Google Scholar 

  9. Bolton H, Fredrickson JK, Elliott LF (1993) Microbial ecology of the rhizosphere. In: Metting FB (ed) Soil Microbial Ecology. Marcel Dekker, Inc., New York, pp 27–63

    Google Scholar 

  10. Bosworth AH, Breil BT, Triplett EW (1993) Production of the anti-rhizobial peptide, trifolitoxin, in sterile soils by Rhizobium leguminosarumbv trifolii T24. Soil Biol Biochem 25:829–832

    Article  CAS  Google Scholar 

  11. Boulter D, Jeremy JJ, Wilding M (1966) Amino acids liberated into the culture medium by pea seedling roots. Plant Soil 24:121–127

    Article  CAS  Google Scholar 

  12. D’Arcy AL (1982) Etude des exsudats racinaires de soja et de lentille I. Cinetique d’exsudation des composés phénoliques, des amino acides et des sucres, au cours des premiers jours de la vie des plantules. Plant Soil 68:399–403

    Article  Google Scholar 

  13. D’Arcy-Lameta A, Jay M (1987) Study of soybean and lentil root exudates III. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant Soil 101:267–272

    Article  CAS  Google Scholar 

  14. De Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl Environ Microbiol 61:3443–3453

    PubMed  Google Scholar 

  15. Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors — signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  16. Dunn MF (1998) Tricarboxylic acid cycle and anapleurotic enzymes in rhizobia. FEMS Microbiol Rev 22:105–123

    Article  PubMed  CAS  Google Scholar 

  17. Dunn MF, Encarnación S, Araíza G, Vargas MC, Dávalos A, Peralta H, Mora Y, Mora J (1996) Pyruvate carboxylase from Rhizobium etli: Mutant characterization, nucleotide sequence, and physiological role. J Bacteriol 178:5960–5970

    PubMed  CAS  Google Scholar 

  18. Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256:998–1000

    Article  PubMed  CAS  Google Scholar 

  19. Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933

    PubMed  CAS  Google Scholar 

  20. Encarnación S, Osorio JC, Mendoza G, Dunn M, Contreras S, Mora J (1998) Protein induced by Rhizobium etli in aerobic or fermentative metabolism. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publ., Dordrecht, pp 467

    Google Scholar 

  21. Fedi S, Tola E, Moenne-Loccoz Y, Dowling DN, Smith LM, O’Gara F (1997) Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Appl Environ Microbiol 63:4261–4266

    PubMed  CAS  Google Scholar 

  22. Fellay R, Perret X, Viprey V, Broughton WJ, Brenner S (1995) Organization of hostinducible transcripts on the symbiotic plasmid of Rhizobium sp NGR234. Molec Microbiol 16:657–667

    Article  CAS  Google Scholar 

  23. Flaig W (1971) Organic compounds in soil. Soil Science 111:19–33

    Article  CAS  Google Scholar 

  24. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Article  PubMed  CAS  Google Scholar 

  25. Fries N, Forsman B (1951) Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol Plant 4:410–420

    Article  Google Scholar 

  26. Fries N, Serck-Hanssen K, Dimberg LH, Theander O (1987) Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus (Boletaceae). Expt Mycol 11:360–363

    Article  Google Scholar 

  27. Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Molec Plant-Microbe Interactions 11:988–998

    Article  CAS  Google Scholar 

  28. Gaugler R, Wilson M, Shearer P (1997) Field release and environmental fate of a transgenic entomopathogenic nematode. Biological Control 9:75–80

    Article  Google Scholar 

  29. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  30. Göttfert M (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev 104:39–63

    Article  Google Scholar 

  31. Graham JH (1982) Effect of citrus root exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74:831–835

    Article  Google Scholar 

  32. Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247

    Article  Google Scholar 

  33. Hartwig UA, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 95:797–803

    Article  PubMed  CAS  Google Scholar 

  34. Hartwig UA, Phillips DA (1991) Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    Article  PubMed  CAS  Google Scholar 

  35. Hawes MC (1990) Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? Plant and Soil 129:19–27

    Article  Google Scholar 

  36. Heinz E, Phillips DA, Streit WR (1999) BioS, a biotin-induced, stationary-phase and possible LysR-type regulator in Sinorhizobium meliloti. Molec Plant-Microbe Interact 12:803–812

    Article  CAS  Google Scholar 

  37. Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol 133:159–171

    Article  Google Scholar 

  38. Hirsch PR, Spokes JD (1994) Survival and dispersion of genetically modified rhizobia in the field and genetic interactions with native strains. FEMS Microbiology Ecology 15:147–159

    Article  CAS  Google Scholar 

  39. Ifuku O, Koga N, Haze S, Kishimoto J, Arai T, Wachi Y (1995) Molecular analysis of growth inhibition caused by overexpression of the biotin operon in Escherichia coli. Bioscience Biotechnol Biochem 59:184–189

    Article  CAS  Google Scholar 

  40. Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60

    Article  Google Scholar 

  41. Koga S, Ogawa J, Cheng LY, Choi YM, Yamada H, Shimizu S (1997) Nucleoside oxidase, a hydrogen peroxide-forming oxidase, from Flavobacterium meningosepticum. Appl Environ Microbiol 63:4282–4286

    PubMed  CAS  Google Scholar 

  42. Koshino H, Masaoka Y, Ichihara A (1993) A benzofuran derivative released by Fedeficient Medicago sativa. Phytochem 33:1075–1077

    Article  CAS  Google Scholar 

  43. León-Barrios M, Dakora FD, Joseph CM, Phillips DA (1993) Isolation of Rhizobium meliloti nod gene inducers from alfalfa rhizosphere soil. Appl Environ Microbiol 59:636–639

    PubMed  Google Scholar 

  44. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317

    Article  PubMed  CAS  Google Scholar 

  45. Lowe RH, Evans HJ (1962) Carbon dioxide requirement for growth of legume nodule bacteria. Soil Sci 94:351–356

    Article  CAS  Google Scholar 

  46. Lynn DG, Chang M (1990) Phenolic signals in cohabitation: Implications for plant development. Annu Rev Plant Physiol Plant Mol Biol 41:497–526

    Article  CAS  Google Scholar 

  47. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  PubMed  CAS  Google Scholar 

  48. Matthews DE, Weiner EJ, Matthews PS, VanEtten HD (1987) Role of oxygenases in pisatin biosynthesis and in fungal degradation of maackiain. Plant Physiol 83:365–370

    Article  PubMed  CAS  Google Scholar 

  49. Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  50. Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1997) Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol Ecol 23:341–352

    Article  CAS  Google Scholar 

  51. Norman EG, Walton AB, Turpin DH (1994) Immediate activation of respiration in Petroselinum crispum L. in response to the Phytophthora megasperma f. sp. Glycinea elicitor. Plant Physiol 106:1541–1546

    PubMed  CAS  Google Scholar 

  52. Nye PH, Tinker PB (1977) Solute Movement in the Soil-Root System. Univ California Press Berkeley

    Google Scholar 

  53. O’Flaherty S, Moenne-Loccoz Y, Boesten B, Higgins P, Dowling DN, Condon S, O’Gara F (1995) Greenhouse and field evaluations of an autoselective system based on an essential thymidylate synthase gene for improved maintenance of plasmid vectors in modified Rhizobium meliloti. Appl Environ Microbiol 61:4051–4056

    CAS  Google Scholar 

  54. Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    PubMed  CAS  Google Scholar 

  55. Phillips DA, Dakora FD, Sande E, Joseph CM, Zon J (1994) Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil 161:69–80

    Article  CAS  Google Scholar 

  56. Phillips DA, Joseph CM, Hirsch PR (1997) Occurrence of flavonoids and nucleosides in agricultural soils. Appl Environ Microbiol 63:4573–4577

    PubMed  CAS  Google Scholar 

  57. Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526–1531

    Article  PubMed  CAS  Google Scholar 

  58. Phillips DA, Joseph CM, Yang GP, Martínez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci, USA 96:12275–12280

    Article  PubMed  CAS  Google Scholar 

  59. Phillips DA, Sande ES, de Bruijn FJ, Le Rudulier D, Joseph CM (1998) A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol 64:3954–3960

    PubMed  CAS  Google Scholar 

  60. Phillips DA, Streit WR (1997) Applying plant-microbe signalling concepts to alfalfa: Roles for secondary metabolites. In: McKersie BD, Brown DCW (eds) Biotechnology and the Improvement of Forage Legumes. CAB International, Wallingford, pp 319–342

    Google Scholar 

  61. Rao JR, Cooper JE (1995) Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Molec Plant-Microbe Interact 8:855–862

    Article  CAS  Google Scholar 

  62. Robleto EA, Scupham AJ, Triplett EW (1997) Trifolitoxin production in Rhizobium etli strain CE3 increases competitiveness for rhizosphere colonization and root nodulation of Phaseolus vulgaris in soil. Molec Plant-Microbe Interact 10:228–233

    Article  Google Scholar 

  63. Rovira AD, Harris JR (1961) Plant root excretions in relation to the rhizosphere effect V. The exudation of B-group vitamins. Plant Soil 14:199–214

    Article  CAS  Google Scholar 

  64. Sadowsky MJ, Olson ER, Foster VE, Kosslak RM, Verma DPS (1988) Two hostinducible genes of Rhizobiumfredii and characterization of the inducing compound. J Bacteriol 170:171–178

    PubMed  CAS  Google Scholar 

  65. Sakurai N, Imai YJ, Masuda M, Komatsubara S, Tosa T (1993) Molecular breeding of a biotin-hyperproducing Serratia marcescens strain. Appl Environ Microbiol 59:3225–3232

    PubMed  CAS  Google Scholar 

  66. Savouré A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, Kondorosi E (1994) Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J 13:1093–1102

    PubMed  Google Scholar 

  67. Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae. Kluwer Acad. Press, Dordtrecht, pp 361–386

    Google Scholar 

  68. Seshadri TR (1962) Interconversions of flavonoid compounds. In: Geissman TA, (ed) The Chemistry of Flavonoid Compounds. Macmillan Co, New York, pp 156–196

    Google Scholar 

  69. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growthpromoting Pseudomonas bacteria. Molec Plant-Microbe Interact 9:600–607

    Article  CAS  Google Scholar 

  70. Smith CE, Ruttledge T, Zeng ZX, Omalley RC, Lynn DG (1996) A mechanism for inducing plant development — the genesis of a specific inhibitor. Proc Natl Acad Sci, USA 93:6986–6991

    Article  PubMed  CAS  Google Scholar 

  71. Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia — the ins and outs of sympathogenesis. Annu Rev Phytopath 33:345–368

    Article  CAS  Google Scholar 

  72. Staehelin C, Schultze M, Kondorosi E, Kondorosi A (1995) Lipo-chitooligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant alfalfa. Plant Physiol 108:1607–1614

    PubMed  CAS  Google Scholar 

  73. Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa rhizosphere colonization by Rhizobium meliloti 1021. Molec Plant-Microbe Interact 9:330–338

    Article  CAS  Google Scholar 

  74. Streit WR, Phillips DA (1996) Recombinant Rhizobium meliloti strains with extra biotin synthesis capability. Appl Environ Microbiol 62:3333–3338

    PubMed  CAS  Google Scholar 

  75. Streit WR, Phillips DA (1997) A biotin-regulated locus, bioS, in a possible survival operon of Rhizobium meliloti. Molec Plant-Microbe Interact 7:933–937

    Article  Google Scholar 

  76. Strzelczyk E, Rozycki H (1985) Production of B-group vitamins by bacteria isolated from soil, rhizosphere, and mycorrhizosphere of pine (Pinus sylvestris L.). Zbl Mikrobiol 140:293–301

    CAS  Google Scholar 

  77. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-Microbe Interactions. Chapman & Hall, New York, pp 187–235

    Chapter  Google Scholar 

  78. Triplett EW (1988) Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci USA 85:3810–3814

    Article  PubMed  CAS  Google Scholar 

  79. Triplett EW (1990) Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol 56:98–103

    PubMed  CAS  Google Scholar 

  80. Triplett EW, Barta TM (1987) Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. trifolii strain T24 on clover. Plant Physiol 85:335–342

    Article  PubMed  CAS  Google Scholar 

  81. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    PubMed  CAS  Google Scholar 

  82. Vande Broek A, Vanderleyden J (1995) The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Molec Plant-Microbe Interact 8:800–810

    Article  Google Scholar 

  83. Villadas PJ, Bergos P, Jording D, Selbitschka W, Puhler A, Toro N (1996) Comparative analysis of the genetic structure of a Rhizobium meliloti field population before and after environmental release of the highly competitive R. meliloti strain GR4. FEMS Microbiol Ecol 21:37–45

    Article  CAS  Google Scholar 

  84. Volpin H, Phillips DA (1998) Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots. Plant Physiol 116:777–783

    Article  PubMed  CAS  Google Scholar 

  85. Watson RJ, Heys R, Martin T, Savard M (2001) Sinorhizobium meliloti cells require biotin and either cobalt or methionine for growth. Appl Environ Microbiol 67:3767–3770

    Article  PubMed  CAS  Google Scholar 

  86. Winans SC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56:12–31

    PubMed  CAS  Google Scholar 

  87. Yagi K (1956) Chemical determination of flavins. Methods of Biochemical Analysis 10:320–355

    Google Scholar 

  88. Yanagita T, Foster JW (1956) A bacterial riboflavin hydrolase. J Biol Chem 221:593–607

    PubMed  CAS  Google Scholar 

  89. Yoder JI (1997) A species-specific recognition system directs haustorium development in the parasitic plant Triphysaria (Scophulariaceae). Planta 202:407–413

    Article  PubMed  CAS  Google Scholar 

  90. Zhulin IB, Bespalov VA, Johnson MS, Taylor BL (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. JBacteriol 178:5199–5204

    CAS  Google Scholar 

  91. Zimmer W, Roeben K, Bothe H (1988) An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta 176:333–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, D.A., Streit, W.R. (2003). Rhizosphere Signals and Ecochemistry. In: Heldmaier, G., Werner, D. (eds) Environmental Signal Processing and Adaptation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56096-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56096-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62858-0

  • Online ISBN: 978-3-642-56096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics