Skip to main content

Neurobiology of Crustacean Walking: from Past to Future

  • Conference paper
Crustacean Experimental Systems in Neurobiology

Abstract

This review summarize data obtained on the functioning of the walking thoracic central pattern generator (CPG) and on the sensory receptors involved during walking. In thoracic in vitro preparations, alternating bursts obtained between opposite muscle nerves correspond to fictive locomotion; it seems to be due to some direct monosynaptic inhibitory connections between motoneurons (MNs) and to pacemaker properties of some MNs. Walking CPG is hierarchically organised by some interneurons (INs) that coordinate the activity of the various MN pools. Two type of sensory receptors contribute to walking (i) external mechanoreceptors inserted in the exoskeleton record the stance phase duration, (ii) internal chordotonal organs are very accurate to record leg position and movements. If some receptor control is limited to a given leg, external mechanoreceptors seem to be crucial in the interleg coordination. Future development in crustacean walking will concern a better knowledge of both the locomotor CPG and the kinematic and dynamic parameters involved in free walking behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowicz JS (1958) Further observations on proprioceptors in Crustacea and a hypothesis about their function. J Mar Biol Assoc UK 37: 379–396

    Article  Google Scholar 

  • Alexandrowicz JS, Whitear M (1957) Receptor elements in the coxal region of decapoda crustacea. J Mar Biol Assoc UK 36: 603–628

    Article  Google Scholar 

  • Ayers JL, Clarac F (1978) Neuromuscular strategies underlying different behavioral acts in a multifunctional crustacean leg joint. J Comp Physiol 128: 81–94

    Article  Google Scholar 

  • Ayers JL, Davis WL (1972) Locomotion control by positive feedback optokinetic responses. Science 177: 183–185

    Article  PubMed  Google Scholar 

  • Ayers JL, Davis WL (1977) Neural control of locomotion in the lobster Homarus americanus. I.Motor programs for forward and backward walking. J Comp Physiol 115: 1–27

    Article  Google Scholar 

  • Barnes WJP (1975a) Leg coordination during walking in the crab Uca pugnax. J Comp Physiol 96: 237–256

    Article  Google Scholar 

  • Barnes WJP (1975b) Nervous control of locomotion in Crustacea. In: Usherwood PNR, Newth DR (eds) Simple nervous systems. Arnold, London, pp 415–441

    Google Scholar 

  • Barnes WJP (1977) Proprioceptive influences on motor output during walking in the crayfish. Symposium on rhythmical motor activity. J Physiol (Paris) 73: 543–564

    CAS  Google Scholar 

  • Barnes WJP, Gladden MH (1985) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, 496 p

    Book  Google Scholar 

  • Barnes WJP, Spririto CP, Evoy WH (1972) Nervous control of walking in the crab Cardisoma guanhumi. II. Role of resistance reflex in walking. Z Vergl Physiol 76: 16–31

    Article  Google Scholar 

  • Von Bethe A (1897) Vergleichende Untershuchungen über die Funktionen des Centralnervensystems der Arthropoden. Pflügers Arch Gesamte Physiol Menschen and Tiere 68: 449–548

    Article  Google Scholar 

  • Von Bethe A (1930) Studien uber die Plastizität des Nervensystems. I. Mitteilung Arachnoiden and Crustacaen. Pflügers Arch Gesamte Physiol Menschen and Tiere 224: 793–820

    Article  Google Scholar 

  • Bevengut M, Neil D (1990) The absence of a head-neck in decapod crustaceans: consequences for orientation and equilibration. In: Berthoz A, Graf W, Vidal PP (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 71–78

    Google Scholar 

  • Bevengut M, Libersat F, Clarac F (1986) Dual locomotor activity selectively controlled by force-and contact-sensitive mechanoreceptors. Neurosci Lett 66: 323–327

    Article  PubMed  CAS  Google Scholar 

  • Blight AR, Llinas R (1980). The non impulsive stretch receptor complex of the crab: a study of depolarization-release coupling at a tonic sensorimotor synapse. Philos Trans R Soc B 290: 219–276

    Article  CAS  Google Scholar 

  • Bowerman RF (1977) The control of arthropods walking. Comp Biochem Physiol 56A: 231–247 Bowerman RF, Larimer JL (1974a) Command fibres in the circumoesophageal connectives of crayfish. I. Tonic fibres. J Exp Biol 60: 95–117

    Google Scholar 

  • Bowerman RF, Larimer JL (1974b) Command fibres in the cirumoesophageal connectives of crayfish. II. Phasic fibres. J Exp Biol 60: 119–134

    Google Scholar 

  • Burrows M, Hoyle G (1973) The mechanism of rapid running in the ghost crab Ocypode ceratophthalma. J Exp Biol 58: 327–349

    Google Scholar 

  • Bush BMH (1965) Proprioception by the coxo-basal chordotonal organ CB in legs of the crab Carcinus maenas. J Exp Biol 42: 285–297

    PubMed  CAS  Google Scholar 

  • Bush BMH (1976) Non impulsive thoracic-coxal receptors in crustaceans. In: Milled PJ (ed.) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 115–152

    Google Scholar 

  • Bush BMH, Cannon AJ (1985) How dow crabs control their muscle receptors? In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, p 145–166

    Google Scholar 

  • Bush BMH, Clarac F (1985) Coordination of motor behaviour. Seminar Series no. 24, SEB Cambridge University Press, Cambridge, 324 p

    Google Scholar 

  • Bush BMH, Laverack M (1982) Mechanoreception in the biology of crustacea, vol 3. In: Atwood HL, Sandeman DC (eds) Neurobiology: structure and functions. Academic Press, New York, pp 399–473

    Google Scholar 

  • Bush BMH, Roberts AM (1969) Muscle receptor potentials without impulses in crab. J Physiol (Lond) 203: 37–38

    Google Scholar 

  • Cattaert D, El Manira A, Clarac F (1992) Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents. J Neurophysiol 67, 2: 610–624

    PubMed  CAS  Google Scholar 

  • Cattaert D, Araque A, Buno W, Clarac F (1994a) Motor neurones of the crayfish walking system possess TEA + revealed regenerative electrical properties. J Exp Biol 188: 339–345

    PubMed  CAS  Google Scholar 

  • Cattaert D, Araque A, Buno W, Clarac F (1994b) Nicotinic and muscarinic activation of motoneurons in the crayfish locomotor network. J Neurophysiol 72: 1622–1633

    PubMed  CAS  Google Scholar 

  • Cattaert D, Barthe J-Y, Clarac F (1994e) Sensory-motor coordination in crustacean limbs during locomotion. In: Swinnen S, Heuer H, Massion J, Casaer P (eds) Interlimb Coordination: Neural, Dynamical, and Cognitive Constraints. Academic Press, San Diego, pp 49–73

    Google Scholar 

  • Cattaert D, Pearlstein E, Clarac F (1995) Cholinergic control of the walking activity in the crayfish Procambarus clarkii. In: Pichon Y, Chauvel P (eds) Oscillations and paroxysmal activity in the nervous system. J Physiol (Paris) 89(4–6): 209–220

    Google Scholar 

  • Chasserat C, Clarac F (1980) Interlimb coordination factors during driven walking in Crustacea. A comparative study of absolute an relative coordination. J Comp Physiol 39: 293–306

    Article  Google Scholar 

  • Chrachri A, Clarac F (1989) Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish Procambarus clarkii. J Neurosci 10: 707–719

    Google Scholar 

  • Clarac F (1977) Motor coordination in crustacean limbs. In: Hoyle G (ed) Identified neurons and behavior of arthropods., Plenum Press, New York, pp 167–186

    Chapter  Google Scholar 

  • Clarac F (1982) Decapod crustacean leg coordination during walking. In: Herreid CF, Fourtner CR (eds.) Locomotion and energetics in arthropods. Plenum Press, New York, pp 31–71

    Google Scholar 

  • Clarac F (1984) Spatial and temporal coordination during walking in crustacea. Trends Neurosci 7: 293–298

    Article  Google Scholar 

  • Clarac F, Barnes WJP (1985) Peripherical influences on the coordination of the leg during walking in decapod crustaceans. In: Bush BMH, Clarac, F (eds) Coordination in motor behaviour. Cambridge University Press, Cambridge, pp 249–269

    Google Scholar 

  • Clarac F, Coulmance M (1971) La marche latérale du crabe (Carcinus): coordination desmouvements articulaires et régulation proprioceptive. Z Vergl Physiol 73: 408–438

    Article  Google Scholar 

  • Clarac F, Cruse H (1982) Comparison of forces developed by the legs of the rock lobster when walking free on a treadmill. Biol Cybern 43: 109–114

    Article  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498

    Article  PubMed  CAS  Google Scholar 

  • Di Caprio RAD, Clarac F (1981) Reversal of a walking leg reflex elicited by a muscle receptor. J Exp Biol 90: 197–203

    Google Scholar 

  • Domenici P, Jamon M, Clarac F (1998) Curve walking in moving crayfish (Procambarus clarkii). J Exp Biol 201: 1315–1329

    PubMed  Google Scholar 

  • Elliot CJH, Stow RA, Hastwell C (1992) Cholinergic interneurons in the feeding system of the pond snail Lymnea stagnalis. I. Cholinergic receptors on feeding neurons. Philos Trans R Soc Lond B Biol Sei 336: 157–166

    Article  Google Scholar 

  • El Manira A, Cattaert D, Clarac F (1991) Monosynaptic connections mediate resistance reflex in crayfish (Procambarus clarkii) walking legs. J Comp Physiol A 168: 337–349

    Article  Google Scholar 

  • Elson RC, Selverston AI (1992) Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobster: bursting pacemaker potentials, synaptic interaction and muscarinic modulation. J Neurophysiol 68: 890–907

    PubMed  CAS  Google Scholar 

  • Evoy WH, Ayers JL (1982) Locomotion and control of limb movement. In: De Bliss D (ed) The biology of Crustacea, vol 4. Academie Press New York, pp 61–105

    Google Scholar 

  • Fields HL (1976) Crustacean and thoracic muscle receptor organ. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 65–114

    Google Scholar 

  • Fraser PJ (1975) Three classes of input to a semi-circular canal interneurone in the crab, Scylla serrata and a possible output. J Comp Physiol 104A: 261–271

    Article  Google Scholar 

  • Fraser P, Bevengut M, Clarac F (1987) Swimming patterns and the activity of identified equilibrium interneurones in the shore crab, Carcinus maenas. J Exp Biol 130: 305–330

    Google Scholar 

  • Freschi JE, Livengood DR (1989) Membrane currents underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J Neurophysiol 62: 984–995

    PubMed  CAS  Google Scholar 

  • Full RJ, Blickman R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol (158) 369–390

    PubMed  CAS  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brooks V (ed) Handbook of physiology. The nervous system. Motor control. Bethesda; American Physiological Society, pp 1179–1236

    Google Scholar 

  • Heitler WJ (1983) The control of rhythmic limb movement in Crustacea. In: Roberts A, Roberts B (eds) Neural origin of rhythmic movements. Cambridge University Press, Cambridge, pp 351–382

    Google Scholar 

  • Herrnkind, WF (1980) Spiny lobster: patterns of movements. In: Cobb JS, Phillips BF (eds) The biology and management of lobsters, vol 1, chap 7. Academic Press, New York, pp 349–407

    Google Scholar 

  • Hughes GM, Wiersma CAG (1960) The coordination of swinuneret movements in the crayfish, Procambarus clarkii (Girard). J Exp Biol 37: 657–670

    Google Scholar 

  • Jindrich DL, Full RJ (1999) Many legged maneuverability: dynamics of turning in hexapods. J Exp Biol 202(12): 1603–1623

    PubMed  Google Scholar 

  • Jamon M, Clarac F (1995) Locomotor patterns in freely moving crayfish (Procambarus clarkii). J Exp Biol 198: 683–700

    PubMed  Google Scholar 

  • Jamon M, Clarac F (1997) Variability of leg kinematics in free-walking crayfish Procambarus clarkii and related inter-joint coordination. J Exp Biol 200: 1201–1213

    PubMed  Google Scholar 

  • Klärner D, Barth FC (1986) The cuticular stress detector (CSD2) of the crayfish. I. Physiological properties. J Exp Biol 122: 149–159

    Google Scholar 

  • Klärner D, Barnes WJP (1986) The cuticular stress detector (CSD2) of the crayfish. II. Activity during walking and influences on the leg coordination. J Exp Biol 122: 161–175

    Google Scholar 

  • Kuhl H (1931) Beitrag zur Plasticität des Nervensystems bei Brachyuren. Z Vergl Physiol 19:489–521

    Article  Google Scholar 

  • Le Ray D, Cattaert D (1997) Neural mechanisms of reflex reversal in coxo-basipodite depressor motorneurons of the crayfish. J Neurophysiol 77: 1963–1978

    PubMed  Google Scholar 

  • Le Ray D, Clarac F, Cattaert D (1997a) Functional analysis of the sensory motor pathways of resistance reflex in crayfish. I. Multisensory coding and motor neurons monosynaptic responses. J Neurophysiol 78: 3133–3143

    PubMed  Google Scholar 

  • Le Ray D, Clarac F, Cattaert D (1997b) Functional analysis of the sensory motor pathways of resistance reflex in crayfish. II. Integration of sensory inputs in motor neurons. J Neurophysiol 78: 3144–3153

    PubMed  Google Scholar 

  • Leibrock C, Marchand A, Barnes W, Clarac F (1996) Synaptic connections of the cuticular stress detectors in crayfish: mono and polysynaptic reflex and the entrainment of fictive locomotion in an in vitro preparation. J Comp Physiol 178: 711–725

    Article  CAS  Google Scholar 

  • Libersat F, Zill S, Clarac F (1987a) Single-unit responses and reflex effects of force sensitive mechanoreceptors of the dactyl of the crab. J Neurophysiol 57: 1601–1617

    PubMed  CAS  Google Scholar 

  • Libersat F, Clarac F, Zill S (1987b) Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. J Neurophysiol 57: 1618–1637

    PubMed  CAS  Google Scholar 

  • Lindberg RG (1955) Growth, population, dynamic and field behavior in the spiny lobster palunirus interruptus. Univ Calif Pub Zool 59: 157–248

    Google Scholar 

  • Macmillan DL (1976) Arthropod apodeme tension receptors. In: Mill PJ (ed) Structure and function of propriopceptors in invertebrates. Chapman and Hall, London, pp 427–442

    Google Scholar 

  • Marchand AR, Leibrock CS, Auriac MC, Barnes WJP, Clarac F (1995) Morphology, physiology and in vivo activity of cuticular stress detector afferents in crayfish. J Comp Physiol 176: 409–424

    Article  Google Scholar 

  • Martinez MM, Full RJ, Koehl MAR (1998) Underwater punting by an intertidal crab: a novel gait revealed by the kinematic of pedestriam locomotion in air versus water. J Exp Biol 201: 2609–2623

    PubMed  Google Scholar 

  • Mill PJ (1976) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, 686 pp

    Google Scholar 

  • Müller U, Clarac F (1990a) Dactyl sensory influences on rock lobster locomotion. I. Intrasegmental and intersegmental leg reflexes during standing and walking. J Exp Biol 148: 89–112

    Google Scholar 

  • Müller U, Clarac F (1990b) Dactyl sensory influences on rock lobster locomotion. II. Role in interleg coordination. J Exp Biol 148: 113–128

    Google Scholar 

  • Müller U, Cruse H (1991a) The contralateral coordination of walking legs in the crayfish Astacus leptodactylus. I. Experimental results. Biol Cybern 64: 429–436

    Article  Google Scholar 

  • Müller U, Cruse H (1991b) The contralateral coordination of walking legs in the crayfish Astacus leptodactylus. II. Model calculations. Biol Cybern 64: 437–446

    Article  Google Scholar 

  • Nagy F, Dickinson PS, Moulins M (1988) Control by an identified modulatory neuron of the sequential expression of plateau properties of, and synaptic inputs, to a neuron in a central pattern generator. J Neurosci 8: 2875–2886

    PubMed  CAS  Google Scholar 

  • Pearlstein E, Marchand AR, Clarac F (1994) Inhibitory effects of L-glutamate on central processes of crustacean leg motoneurons. Eur J Neurosci 6: 1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein E, Watson AHD, Bevengut M, Cattaert D (1998) Inhibitory connections between antagonistic motor neurones of the crayfish walking legs. J Comp Neurol 399: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Ritzmann RE, Tobias ML, Fourtner CR (1980) Flight activity initiated via giant interneurones of the cockroach: evidence for bifunctional trigger interneurones. Science 210: 443–445

    Article  PubMed  CAS  Google Scholar 

  • Ryckebusch S, Laurent G (1993) Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J Neurophysiol 69: 1583–1595

    PubMed  CAS  Google Scholar 

  • Sillar KT, Skorupski P (1986) Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus,is correlated with rhythmic motor output of thoracic ganglia. J Neurophysiol 55: 678–688

    PubMed  CAS  Google Scholar 

  • Sillar KT, Skorupski P, Elson RA, Bush BMH (1986) Two identified afferent neurones entrain a central locomotor rhythm generator. Nature 323: 440–443

    Article  Google Scholar 

  • Skorupski P, Rawat BM, Bush BMH (1992) Heterogeneity and central modulation of feedback reflexes in crayfish motor pool. J Neurophysiol 67: 648

    PubMed  CAS  Google Scholar 

  • Skorupski P, Vescovi P, Bush BMH (1994) Integration of positive and negative feedback loops in a crayfish muscle. J Exp Biol 187: 305–313

    PubMed  Google Scholar 

  • Vedel JP, Clarac F (1976) Hydrodynamic sensitivity by cuticular organs in the rock lobster Palinurus vulgaris. Morphological and physiological aspects. Mar Behav Physiol 3: 235–251

    Article  Google Scholar 

  • Waterman TH (1961) The physiology of Crustacea. vol. II. Sense organs, integration and behavior. Academic Press, New York, 681 pp

    Google Scholar 

  • Whitear M (1962) The fine structure of crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab Carcinus maenas. Philos Trans R Soc Lond B 245: 291–324

    Article  Google Scholar 

  • Wilson DM (1966) XInsect walking. Annu Rev Entomol 11: 103–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clarac, F. (2002). Neurobiology of Crustacean Walking: from Past to Future. In: Wiese, K. (eds) Crustacean Experimental Systems in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56092-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56092-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62860-3

  • Online ISBN: 978-3-642-56092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics