Skip to main content

Physiology of the Crustacean Cardiac Ganglion

  • Conference paper
Crustacean Experimental Systems in Neurobiology

Abstract

The crustacean cardiac ganglion (CG) is composed of 6-16 neurons, 9 in most decapods, that autonomously provide rhythmically recurring barrages of action potentials to activate the heart muscle. In Malacostraca, the heart is neurogenic and in adults dependent for its beating on the impulses from the ganglion. The CG, consisting of the neurons and their processes, wrapped in glial and connective tissue, forms an elongated, discrete branching trunk in or on the heart. It can be dissected from the heart and will continue to show spontaneous, rhythmical bursting. As an accessible and robust in vitro preparation, the CG joins a list of crustacean preparations that have provided insights into fundamental neurophysiological mechanisms, in this case the mechanisms by which small neuronal networks can generate rhythmical, patterned output (review: Wiens 1982). Possibly the most important insight arises from the demonstration that individual neurons are endowed with an intrinsic burst-organizing mechanism that insures a patterned output to any appropriate excitatory drive and that interconnections among a small number of neurons with such a capability can ensure coordinated, patterned, rhythmic highly fault-tolerant output from the ensemble. Patterned or bursting impulses are, of course, the essential effective activator of responses of other neurons or muscles or secretory cells. The contribution of intrinsic neuronal properties in pattern generation has become more widely recognized, not only in other crustacean ganglia (e.g. plateau potentials of the stomatogastric ganglion, Russell and Hartline 1978, 1982, 1984; Dickinson and Nagy 1983; Harris-Warrick et al. 1992a), but as a proven or suspected feature of pattern generation in neurons and neuroendocrine cells (Cooke and Stuenkel 1985) of most if not all animal groups (e.g. insects, Hancox and Pitman 1991; molluscs, Kramer and Zucker 1985; Hurwitz and Susswein 1996; Perrins and Weiss 1998; annelids, Arbas and Calabrese 1987; vertebrates, Llinás and Sugimori, 1980, Purkinje cells; Deschênes et al. 1982; Llinás and Jahnsen 1982, thalamic neurons; Legendre et al. 1982, hypothalamic neurons; Hounsgaard and Kiehn 1989, review Hultborn 1999, motorneurons; Grillner et al. 1991, lamprey swimming; Rekling and Feldman 1998, respiratory rhythm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizu S (1975) Fine structure of cardiac ganglion truck in prawnPanaeus japonicusBates. Tissue Cell 7: 433–452

    PubMed  CAS  Google Scholar 

  • Alexandrowicz JS (1932) Innervation of the heart of the Crustacea. I. Decapoda. Q J Microsc Sci 75: 182–249

    Google Scholar 

  • Alexandrowicz JS (1934) The innervation of the heart of Crustacea. II. Stomatopoda. Q J Microscop Sci 76: 511–548

    Google Scholar 

  • Alexandrowicz JS (1952) Innervation of the heart ofLigia oceanica.J Mar Biol Assoc 31: 85–96 Alexandrowicz JS (1953) Nervous organs in the pericardial cavity of the decapod Crustacea.J Mar Biol Assoc UK 31: 563–580

    Google Scholar 

  • Alexandrowicz JS, Carlisle DB (1953) Some experiments on the function of the pericardial organs in Crustacea. J Mar Biol Assoc UK 32: 175–192

    Google Scholar 

  • Anderson M, Cooke IM (1971) Neural activation of the heart of the lobsterHomarus americanus.J Exp Biol 55: 449–468

    PubMed  CAS  Google Scholar 

  • Angstadt JD, Choo JJ (1996) Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech. J Neurophysiol 76: 1491–1502

    PubMed  CAS  Google Scholar 

  • Arbas EA, Calabrese RL (1987) Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech. J Neurosci 7: 3945–3952

    PubMed  CAS  Google Scholar 

  • Atwood HL (1976) Organization and synaptic physiology of crustacean neuromuscular systems. Prog Neurobiol 7: 291–391

    PubMed  CAS  Google Scholar 

  • Benson JA (1980) Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crabPortunus sanguinolentus.J Exp Biol 87: 285–313

    PubMed  CAS  Google Scholar 

  • Benson JA (1981) Synaptic and regenerative responses of cardiac muscle fibers in the crabPortunus sanguinolentus.J Comp Physiol A 143: 349–356

    Google Scholar 

  • Benson JA (1984) Octopamine alters rhythmic activity in the isolated cardiac ganglion of the crabPortunus sanguinolentus.Neurosci Lett 44: 59–64

    PubMed  CAS  Google Scholar 

  • Benson JA, Cooke IM (1984) Driver potentials and the organization of rhythmic bursting in crustacean ganglia. Trends Neurosci 7: 85–91

    CAS  Google Scholar 

  • Berlind A (1982) Spontaneous and repetitive driver potentials in crab cardiac ganglion neurons. J Comp Physiol A 149: 263–276

    Google Scholar 

  • Berlind A (1985) Endogenous burst-organizing potentials in two classes of neurons in the lobster cardiac ganglion respond differently to alterations in divalent ion concentration. J Comp Physiol A 157: 845–856

    CAS  Google Scholar 

  • Berlind A (1989) Feedback from motor neurones to pacemaker neurones in lobster cardiac ganglion contributes to regulation of burst frequency. J Exp Biol 141: 277–294

    Google Scholar 

  • Berlind A (1993) Heterogeneity of motorneuron driver potential properties along the anterior-posterior axis of the lobster cardiac ganglion. Brain Res 609: 51–58

    PubMed  CAS  Google Scholar 

  • Berlind A (1998) Dopamine and 5-hydroxytryptamine actions on the cardiac ganglion of the lobsterHomarus americanus.J Comp Physiol A182: 363–376

    Google Scholar 

  • Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 19: 599–609

    PubMed  CAS  Google Scholar 

  • Breem CA, Atwood HL (1983) Octopamine―a neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions. Nature (Lond) 303: 716–718

    Google Scholar 

  • Brown HF (1964a) Electrophysiological investigations of the heart ofSquilla mantis.I. The ganglionic nerve trunk. J Exp Biol 41: 689–700

    CAS  Google Scholar 

  • Brown HF (1964b) Electrophysiological investigation of the heart ofSquilla mantisII. The heart muscle. J Exp Biol 41: 701–722

    CAS  Google Scholar 

  • Chaigneau J (1983) Neurohemal organs in Crustacea. In: Gupta AP (ed) Neurohemal organs of arthropods: their development, evolution, structures, and functions. Charles C. Thomas, Springfield, pp 53–89

    Google Scholar 

  • Connor JA (1969) Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J Exp Biol 50: 275–295

    PubMed  CAS  Google Scholar 

  • Cooke IM (1962) The neurohumoral regulation of the crustacean heart. PhD Dissertation, Harvard University, Cambridge

    Google Scholar 

  • Cooke IM (1966) The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Am Zool 6: 107–121

    PubMed  CAS  Google Scholar 

  • Cooke IM (1988) Studies on the crustacean cardiac ganglion. Comp Biochem Physiol 91C: 205–218

    Google Scholar 

  • Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202 (2) (in press)

    Google Scholar 

  • Cooke IM, Hartline DK (1975) Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobsterHomarus americanus.J Exp Biol 63: 33–52

    PubMed  CAS  Google Scholar 

  • Cooke IM, Stuenkel EL (1985) Electrophysiology of invertebrate neurosecretory cells. In: Poisner AM, Trifaró JM (eds) The electrophysiology of the secretory cell. Elsevier, Amsterdam, pp 115–164

    Google Scholar 

  • Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Bliss D, Atwood H, Sandeman D (eds) The biology of crustacea, vol 3. Academic Press, New York, pp 205–290

    Google Scholar 

  • Delgado J, Oyola E, Miller MW (2001) Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobsterPanulirus argus.J Neurocytol 29: 605–619

    Google Scholar 

  • Deschênes M, Roy JP, Steriade M (1982) Thalamic bursting mechanisms• an inward slow current revealed by membrane hyperpolarization. Brain Res 239: 289–293

    PubMed  Google Scholar 

  • Dickinson PS, Nagy F (1983) Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones. J Exp Biol 105: 59–82

    PubMed  CAS  Google Scholar 

  • Dircksen H (1994) Distribution and physiology of crustacean cardioactive peptide in arthropods. In: Perspectives in comparative endocrinology. National Research Council of Canada, Ottowa, pp 139–148

    Google Scholar 

  • Eyzaguirre C, Kuffler SW (1955) Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol 39: 87–119

    PubMed  CAS  Google Scholar 

  • Fatt P, Katz B (1953) The effect of inhibitory nerve impulses on a crustacean muscle fibre. J Physiol (Lond) 121: 374–389

    CAS  Google Scholar 

  • Florey E, Rathmayer M (1978) The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp Biochem Physiol 61C: 229–237

    CAS  Google Scholar 

  • Florey E, Rathmayer M (1990) Facilitation and potentiation of transmitter release at neuromuscular synapses in the heart ofSquilla mantis:functional and theoretical implications. In: Wiess K, Krenz W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. (Advances in Life Sciences) Birkhäuser, Basel, pp 330–337

    Google Scholar 

  • Fort TJ, Miller MW (2001) Functional organization of the cardiac system of the blue crabCallinectes sapidus:gabaergic and catecholaminergic regulatory fibers. Soc Neurosci Abstr 27: 2500

    Google Scholar 

  • Freschi JE (1989) Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion. Neurosci Lett 106: 105–111

    PubMed  CAS  Google Scholar 

  • Freschi JE, Livengood DR (1989) Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J Neurophysiol 62: 984–995

    PubMed  CAS  Google Scholar 

  • Friesen WO (1975a) Physiological anatomy and burst pattern in the cardiac ganglion of the spiny lobsterPanulirus interruptus.J Comp Physiol 101: 173–189

    Google Scholar 

  • Friesen WO (1975b) Synaptic interactions in the cardiac ganglion of the spiny lobsterPanulirus interruptus.J Comp Physiol 101: 191–205

    Google Scholar 

  • Friesen WO (1975c) Antifacilitation and facilitation in the cardiac ganglion of the spiny lobsterPanulirus interruptus.J Comp Physiol 101: 207–224

    Google Scholar 

  • Golowasch J, Marder E (1992) Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J Neurophysiol 67: 318–331

    PubMed  CAS  Google Scholar 

  • Graubard K, Raper JA, Hartline DK (1983) Graded synaptic transmission between identified spiking neurons. J Neurophysiol 50: 508–521

    PubMed  CAS  Google Scholar 

  • Grillner S, Wallén P, Brodin L (1991) Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci 14: 169–199

    PubMed  CAS  Google Scholar 

  • Guirguis MS, Wilkens JL (1995) The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume, and neurohormones inHomarus americanus.Biol Bull 188: 179–185

    Google Scholar 

  • Hagiwara S (1961) Nervous activities of the heart in Crustacea. Ergeb Biol 24: 287–311

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Bullock TH (1957) Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J Cell Comp Physiol 50: 25–47

    CAS  Google Scholar 

  • Hagiwara S, Takahashi K (1967) Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol 50: 583–601

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Watanabe A, Saito N (1959) Potential changes in syncytial neurons of lobster cardiac ganglion. J Neurophysiol 22: 554–572

    PubMed  CAS  Google Scholar 

  • Hancox JC, Pitman RC (1991) Plateau potentials drive axonal impulse bursts in insect motoneurons. Proc R Soc Lond B244: 33–38

    Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) (1992a) Dynamic biological networks: the stomatogastric nervous system. MIT Press, Cambridge, Massachusetts, 328 pp

    Google Scholar 

  • Harris-Warrick RM, Nagy F, Nusbaum MP (1992b) Neuromodulation of stomatogastric networks by identified neurons and transmitters. In: Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) Dynamic biological networks: the stomatogastric nervous system. MIT Press, Cambridge, Massachusetts, pp 87–138

    Google Scholar 

  • Hartline DK (1967) Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobsterHomarus americanus.J Exp Biol 47: 327–340

    PubMed  CAS  Google Scholar 

  • Hartline DK (1979) Integrative neurophysiology of the lobster cardiac ganglion. Am Zool 19: 53–65

    Google Scholar 

  • Hartline DK, Cooke IM (1969) Postsynaptic membrane response predicted from presynaptic input pattern in lobster cardiac ganglion. Science 164: 1080–1082

    PubMed  CAS  Google Scholar 

  • Hartline DK, Graubard K (1992) Cellular and synaptic properties in the crustacean stomatogastric nervous system. In: Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) Dynamic biological networks: the stomatogastric nervous system. MIT Press, Cambridge, Massachusetts, pp 31–86

    Google Scholar 

  • Hashemzadeh-Gargari H, Freschi J (1992) The effects of glutamate agonists on voltage-clamped motoneurons of the lobster cardiac ganglion. J Exp Biol 169: 53–63

    PubMed  CAS  Google Scholar 

  • Hawkins WE, Howse HD (1978) A light and electron microscopic study of the cardiac ganglion of the blue crabCallinectes sapidusRathbun. Trans Am Micros Soc 97: 363–380

    Google Scholar 

  • Hounsgaard, J, Kiehn 0 (1989) Serotonin-induced bistability of turtle motoneurons caused by a nifedipine-sensitive calcium plateau potential. J Physiol (Lond) 414: 265–282

    CAS  Google Scholar 

  • Hultborn H (1999) Plateau potentials and their role in regulating motoneuronal firing. Prog Brain Res 123: 39–48

    PubMed  CAS  Google Scholar 

  • Hurwitz I, Susswein AJ (1996) B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs ofAplysia californica.J Neurophysiol 75: 1327–1344

    PubMed  CAS  Google Scholar 

  • Irisawa A, Hama K (1965) Contact of adjacent nerve fibers in the cardiac nerve of mantis shrimp. Jpn J Physiol 15: 323–330

    Google Scholar 

  • Kerrison J, Freschi JE (1992) The effects of y-aminobutyric acid on voltage-clamped motoneurons of the lobster cardiac ganglion. Comp Biochem Physiol 101C: 227–233

    CAS  Google Scholar 

  • Kim U, McCormick DA (1998) Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neuronsin vitro.J Neurophysiol 80: 1222–1235

    PubMed  CAS  Google Scholar 

  • Krajniak KG (1991) The identification and structure-activity relations of a cardioactive FMRFamide-related peptide from the blue crabCallinectes sapidus.Peptides 12: 1295–1302

    PubMed  CAS  Google Scholar 

  • Kramer RH, Zucker RS (1985) Calcium-dependent inward current inAplysiabursting pacemaker neurones. J Physiol (Lond) 363: 107–130

    Google Scholar 

  • Kuramoto T, Ebara A (1984a) Effects of perfusion pressure on the isolated heart of the lobsterPanulirus japonicus.J Exp Biol 109: 121–140

    Google Scholar 

  • Kuramoto T, Ebara A (1984b) Neurohormonal modulation of the cardiac outflow through the cardioarterial valve in the lobster. J Exp Biol 111: 123–130

    Google Scholar 

  • Kuramoto T, Ebara A (1985) Effects of perfusion pressure on the bursting neurones in the intact or segmented cardiac ganglion of the lobsterPanulirus japonicus.J Neurosci Res 13: 569–580

    PubMed  CAS  Google Scholar 

  • Kuramoto T, Ebara A (1988) Combined effects of 5-hydroxytryptamine and filling pressure on the isolated heart of the lobsterPanulirus japonicus.J Comp Physiol B158: 403–412

    Google Scholar 

  • Kuramoto T, Ebara A (1991) Combined effects of octopamine and filling pressure on the isolated heart of the lobsterPanulirus japonicus.J Comp Physiol B161: 339–347

    Google Scholar 

  • Kuramoto T, Kuwasawa K (1980) Ganglionic activation of the myocardium of the lobsterPanulirus japonicus.J Comp Physiol 139: 67–76

    Google Scholar 

  • Kuramoto T, Yamagishi H (1990) Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans. Physiol Zool 63: 102–116

    Google Scholar 

  • Kuramoto T, Hirose E, Tani M (1992) Neuromuscular transmission and hormonal modulation in the cardioarterial valve of the lobsterHomarus americanus.In: Hill RB, Kuwasawa K, McMahon BR, Kuramoto T (eds) Phylogenetic models in functional coupling of the CNS and the cardiovascular system. Karger, Basel, pp 62–69

    Google Scholar 

  • Labenia J, Scholz NL, Goy MF, Graubard K (1998) NO/cGMP modulates the crustacean cardiac ganglion. Soc Neurosci Abstr 24: 360

    Google Scholar 

  • Legendre P, Cooke IM, Vincent JD (1982) Regenerative responses of long duration recorded intracellularly from dispersed cell cultures of fetal mouse hypothalamus. J Neurophysiol 48: 1121–1141

    PubMed  CAS  Google Scholar 

  • Lemos JR, Berlind A (1981) Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion. J Exp Biol 90: 307–326

    CAS  Google Scholar 

  • Livengood DR (1983) Coupling ratio of the Na-K pump in the lobster cardiac ganglion. J Gen Physiol 82: 853–874

    PubMed  CAS  Google Scholar 

  • Livengood DR, Kusano K (1972) Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J Neurophysiol 35: 170–186

    PubMed  CAS  Google Scholar 

  • Livengood DR, Kusano K (1973) Modulation of the crustacean heart rate by an electrogenic Na+pump. In: Salanki J (ed) Neurobiology of invertebrates. Hungarian Acad Sci, Tihany, pp 213–230

    Google Scholar 

  • Llinás R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neuronesin vitro.Nature (Lond) 297: 406–408

    Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties ofin vitroPurkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond) 305: 197–213

    Google Scholar 

  • Marder E, Swensen AM, Blitz DM, Christie AE, Nusbaum MP (2002) Convergence and divergence of cotransmitter systems in the crab stomatogastric nervous system. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 20–33

    Google Scholar 

  • Matsui K (1955) Spontaneous discharges of the isolated ganglionic trunk of the lobster heart(Panulirus japonicus).Sci Rep Tokyo Kyoiku Daigaku B7: 257–268

    Google Scholar 

  • Matsui K, Ai N, Kuwasawa K (1973) Spontaneous inhibitory post-synaptic potentials in the cardiac ganglion preparation of the lobsterPanulirus japonicas.Comp Biochem Physiol 44A: 953–965

    Google Scholar 

  • Matsui K, Kuwasawa K, Kuramoto T (1977) Periodic bursts in large cell preparations of the lobster cardiac ganglion(Panulirus japonicas).Comp Biochem Physiol 56A: 313–324

    Google Scholar 

  • Mayeri EM (1973a) Functional organization of the cardiac ganglion of the lobsterHomarus americanus.J Gen Physiol 62: 448–472

    CAS  Google Scholar 

  • Mayeri EM (1973b) A relaxation oscillator description of the burst generating mechanism in the cardiac ganglion of the lobsterHomarus americanus.J Gen Physiol 62: 473–488

    CAS  Google Scholar 

  • Maynard DM (1953) Activity in a crustacean ganglion I. Cardioinhibition and acceleration inPanulirus argus.Biol Bull 104: 156–170

    Google Scholar 

  • Maynard DM (1955) Activity in a crustacean ganglion II. Pattern and interaction in burst formation. Biol Bull 109: 420–436

    Google Scholar 

  • Maynard DM (1960) Circulation and heart function. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 161–226

    Google Scholar 

  • Maynard DM (1961) Cardiac inhibition in decapod Crustacea. In: Florey E (ed) Nervous inhibition. Pergamon Press, New York, pp. 144–178

    Google Scholar 

  • Maynard E (1971) Microscopic localization of cholinesterases in the nervous systems of lobstersPanulirus argusand Homarus americanus.Tissue Cell 3: 215–230

    PubMed  CAS  Google Scholar 

  • Mercier AJ, Russenes RT (1992) Modulation of crayfish hearts by FMRFamide-related peptides. Biol Bull 182: 333–340

    CAS  Google Scholar 

  • Mercier AJ, Schiebe M, Atwood HL (1990) Pericardial organ peptides enhance synaptic transmission and tension in phasic extensor muscles of crayfish. Neurosci Lett 111: 92–98

    PubMed  CAS  Google Scholar 

  • Mercier AJ, Orchard I, TeBrugge V, Skerrett M (1993) Isolation of two FMRFamide-related peptides from crayfish pericardial organs. Peptides 14: 137–143

    PubMed  CAS  Google Scholar 

  • Miller MW, Sullivan RE (1981) Some effects of proctolin on the cardiac ganglion of the Maine lobsterHomarus americanus(Milne Edwards). J Neurobiol 12: 629–639

    PubMed  CAS  Google Scholar 

  • Miller MW, Benson JA, Berlind A (1984) Excitatory effects of dopamine on the cardiac ganglia of the crabsPortunus sanguinolentasandPodophthalmus vigil.J Exp Biol 108: 97–118

    CAS  Google Scholar 

  • Mirolli M, Cooke IM, Talbott SR, Miller MW (1987) Structure and localization of synaptic complexes in the cardiac ganglion of a portunid crab. J Neurocytol 16: 115–130

    PubMed  CAS  Google Scholar 

  • Morganelli PM, Sherman RG (1987) Nerve terminals and synapses in the cardiac ganglion of the adult lobsterHomarus americanus.J Morphol 191: 177–191

    Google Scholar 

  • Nussbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network mudulation. Trends Neurosci 24: 146–15

    Google Scholar 

  • Ocorr KA, Berlind A (1983) The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. J Neurobiol 14: 51–59

    PubMed  CAS  Google Scholar 

  • Ohsawa K (1972) Morphological organization and fine structures of the cardiac ganglion of the lobsterPanulirus japonicas.Sci Rep Tokyo Kyoiku Daigaku B15: 1–24

    Google Scholar 

  • Orkand RK (1962) The relation between membrane potential and contraction in single crayfish muscle fibres. J Physiol (Lond) 161: 143–159

    CAS  Google Scholar 

  • Otani T, Bullock TH (1959) Effects of presetting the membrane potential of the soma of spontaneous and integrating ganglion cells. Physiol Zool 32: 104–114

    Google Scholar 

  • Perrins R, Weiss KR (1998) Compartmentalization of information processing in anAplysiafeeding circuit interneuron through membrane properties and synaptic interactions. J Neurosci 18: 3977–3989

    PubMed  CAS  Google Scholar 

  • Rekling JC, Feldman JL (1998) Prebötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60: 385–405

    PubMed  CAS  Google Scholar 

  • Russell DF, Hartline DK (1978) Bursting neural networks: a reexamination. Science 200: 453–456

    PubMed  CAS  Google Scholar 

  • Russell DF, Hartline DK (1982) Slow active potentials and bursting motor patterns in pyloric network of the lobstersPanulirus interruptus.J Neurophysiol 48: 914–937

    PubMed  CAS  Google Scholar 

  • Russell DF, Hartline DK (1984) Synaptic regulation of properties and burst oscillations of neurons in the gastric mill system of spiny lobsterPanulirus interruptus.J. Neurophysiol 52: 54–73

    PubMed  CAS  Google Scholar 

  • Sakurai A, Yamagishi H (1998) Identification of two cardioacceleratory neurons in the isopod crustaceanLigia exoticaand their effects on cardiac ganglion cells. J Comp Physiol A182: 145–152

    Google Scholar 

  • Sakurai A, Yamagishi H (2000) Graded neuromuscular transmission in the heart of the isopod crustaceanLigia exotica.J Exp Biol 203: 1447–1457

    PubMed  CAS  Google Scholar 

  • Saver MA, Wilkens JL (1998) Comparison of the effects of five hormones on intact and open heart cardiac ganglionic output and myocardial contractility in the shore crabCarcinus maenas.Comp Biochem Physiol Al20: 301–310

    Google Scholar 

  • Saver MA, Wilkens JL, Airriess CN (1998) Proctolin affects the activity of the cardiac ganglion, myocardium, and cardioarterial valves inCarcinus maenashearts. J Comp Physiol B168: 473–482

    Google Scholar 

  • Saver MA, Wilkins JL, Syed NI (1999) In situ and in vitro identification and characterization of cardiac ganglion neurons in the crabCarcinus maenas.J Neurophysiol 81: 2964–2976

    CAS  Google Scholar 

  • Shimahara T (1969a) The inhibitory post-synpatic potential in the cardiac ganglion cell of the lobsterPanulirus japonicus.Sci Rep Tokyo Kyoiku Daigaku B14: 9–26

    Google Scholar 

  • Shimahara T (1969b) The effect of the acceleratory nerve on the electrical activity of the lobster cardiac ganglion. Zool Mag 78: 351–255

    Google Scholar 

  • Sivan E, Parnas H, Dolev D (1999) Fault tolerance in the cardiac ganglion of the lobster. Biol Cybern 81: 11–23

    Google Scholar 

  • Skiebe P (2002) Peptidergic release sites involved in modulation of the stomatogastric nervous system. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 34–48

    Google Scholar 

  • Smith RI (1947) The action of electrical stimulation and of certain drugs on cardiac nerves of the crabCancer irroratus.Biol Bull 93: 72–88

    PubMed  CAS  Google Scholar 

  • Stangier J, Hilbich C, Beyreuther K, Keller R (1987) A novel cardioactive peptide (CCAP) from pericardial organs of the shore crabCarcinus maenas.Proc Natl Acad Sci USA 84: 575–579

    PubMed  CAS  Google Scholar 

  • Su H, Alroy G, Kirson ED, Yaari Y (2001) Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 21: 4173–4182

    PubMed  CAS  Google Scholar 

  • Sullivan RE (1979) A proctolin-like peptide in crab pericardial organs. J Exp Zool 210: 543–552

    CAS  Google Scholar 

  • Sullivan RE, Miller MW (1984) Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J Neurobiol 15: 173–196

    PubMed  CAS  Google Scholar 

  • Sullivan RE, Miller MW (1990) Cholinergic activation of the lobster cardiac ganglion. J Neurobiol 21: 639–650

    PubMed  CAS  Google Scholar 

  • Sullivan RE, Friend BJ, Barker DL (1977) Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage and secretion of biogenic amines. J Neurobiol 8: 581–605

    PubMed  CAS  Google Scholar 

  • Suzuki S (1934) Ganglion cells in the heart of Ligia exotica (Roux). Sci Repts Tohoku Imp Univ Fourth Ser 9: 214–218 [As referenced by Maynard 1960]

    Google Scholar 

  • Tameyasu T (1976) Intracellular potentials in the small cells and cellular interaction in the cardiac ganglion of the lobsterPanulirus japonicus.Comp Biochem Physiol 54A: 191–196

    Google Scholar 

  • Tameyasu T (1987) The mechanism of the burst formation in the cardiac ganglion of the lobster(Panulirus japonicus):a re-examination. J Comp Physiol A 161: 389–398

    Google Scholar 

  • Tazaki K (1967) Intracellular potential changes in the cardiac ganglion cell of the crabEriocheir japonicus.Sci Rep Tokyo Kyoiku Daigaku B12: 191–210

    Google Scholar 

  • Tazaki K (1970) Slow potential changes during the burst in the cardiac ganglion of the crabEriocheir japonicus.Annot Zool Jpn 43: 63–69

    Google Scholar 

  • Tazaki K (1971a) The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crabEriocheir japonicus.Jpn J Physiol 21: 529–536

    CAS  Google Scholar 

  • Tazaki K (1971b) Small synaptic potentials in burst activity of large neurons in the lobster cardiac ganglion. Jpn J Physiol 21: 645–658

    CAS  Google Scholar 

  • Tazaki K (1972) The burst activity of different cell regions and intercellular co-ordination in the cardiac ganglion of the crabEriocheir japonicus.J Exp Biol 57: 713–726

    PubMed  CAS  Google Scholar 

  • Tazaki K (1973) Impulse activity and pattern of large and small neurones in the cardiac ganglion of the lobsterPanulirus japonicus.J Exp Biol 58: 473–486

    Google Scholar 

  • Tazaki K, Cooke IM (1979a) Spontaneous electrical activity and interaction of large and small cells in the cardiac ganglion of the crabPortunus sanguinolentus. JNeurophysiol 42: 975–999

    CAS  Google Scholar 

  • Tazaki K, Cooke IM (1979b) Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crabPortunus sanguinolentus.J Neurophysiol 42: 1000–1021

    CAS  Google Scholar 

  • Tazaki K, Cooke IM (1979c) The ionic bases of slow depolarizing responses of cardiac ganglion neurons in the crabPortunus sanguinolentus.J Neurophysiol 42: 1022–1047

    CAS  Google Scholar 

  • Tazaki K, Cooke IM (1983a) Topographical localization of function in the cardiac ganglion of the crabPortunus sanguinolentus.J Comp Physiol A151: 311–328

    Google Scholar 

  • Tazaki K, Cooke IM (1983b) Separation of neuronal sites of driver potential and impulse generation by ligaturing in the cardiac ganglion of the lobsterHomarus americanus.J Comp Physiol A151: 329–346

    Google Scholar 

  • Tazaki K, Cooke IM (1983c) Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. Soc Exp Biol Symp 37: 129–157

    CAS  Google Scholar 

  • Tazaki K, Cooke IM (1986) Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster(Homarus americanus).J Neurophysiol 56: 1739–1762

    PubMed  CAS  Google Scholar 

  • Tazaki K, Cooke IM (1990) Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. J Neurophysiol 63: 370–384

    PubMed  CAS  Google Scholar 

  • Terzuolo CA, Bullock TH (1958) Acceleration and inhibition in crustacean ganglion cells. Arch Ital Biol 96: 117–134

    Google Scholar 

  • Trimmer BA, Kobierski LA, Kravitz EA (1987) Purification and characterization of FMRFamide-like immunoreactive substances from the lobster nervous system: Isolation and sequence analysis of two closely related peptides. J Comp Neurol 266: 16–26

    PubMed  CAS  Google Scholar 

  • van der Kloot W (1970) The electrophysiology of muscle fibers in the hearts of decapod crustaceans. J Exp Zool 174: 367–380

    Google Scholar 

  • Watanabe A (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. JpnJPhysiol 8: 305–318

    CAS  Google Scholar 

  • Watanabe A, Bullock TH (1960) Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J Gen Physiol 43: 1031–1045

    PubMed  CAS  Google Scholar 

  • Watanabe A, Takeda K (1963) The spread of excitation among neurons in the heart ganglion of the stomatopodSquilla oratoria.J Gen Physiol 46: 773

    PubMed  CAS  Google Scholar 

  • Watanabe A, Obara S, Akiyama T, Yumoto K (1967a) Electrical properties of the pacemaker neurons in the heart ganglion of a stomatopodSquilla oratoria.J Gen Physiol 50: 813–838

    CAS  Google Scholar 

  • Watanabe A, Obara S, Akiyama T (1967b) Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopodSquilla oratoria.J Gen Physiol 50: 839–862

    CAS  Google Scholar 

  • Watanabe A, Obara S, Akiyama T (1968) Inhibitory synapses on pacemaker neurons in the heart ganglion of a stomatopodSquilla oratoria.J Gen Physiol 52: 908–924

    PubMed  CAS  Google Scholar 

  • Watanabe A, Obara S, Akiyama T (1969) Acceleratory synapses on pacemaker neurons in the heart ganglion of a stomatopodSquilla oratoria.J Gen Physiol 54: 212–231

    PubMed  CAS  Google Scholar 

  • Welsh JH, Maynard DM (1951) Electrical activity of a simple ganglion. Fed Proc 10: 145

    Google Scholar 

  • Wiens TJ (1982) Small systems of neurons: control of rhythmic and reflex activities. In: Bliss D, Sandeman D, Atwood H (eds) The biology of Crustacea, vol 4. Academic Press, New York, pp 193–240

    Google Scholar 

  • Wiersma CAG, Novitski E (1942) The mechanism of the nervous regulation of the crayfish heart. J Exp Biol 19: 255–265

    Google Scholar 

  • Wilkens JL (1999) Evolution of the cardiovascular system in Crustacea. Am Zool 39: 199–214

    Google Scholar 

  • Wilkens JL, Mercier AJ (1993) Peptidergic modulation of cardiac performance in isolated hearts from the shore crabCarcinus maenas.Physiol Zool 66: 237–256

    CAS  Google Scholar 

  • Wilkens JL, Kuramoto T, McMahon BR (1996) The effects of six pericardial hormones and hypoxia on the semi-isolated heart and sternal arterial valve of the lobsterHomarus americanus.Comp Biochem Physiol 114C: 57–65

    CAS  Google Scholar 

  • Yamagishi H, Ando H, Makioka T (1997) Myogenic heartbeat in the primitive crustaceanTriops longicaudatu.Biol Bull 193: 350–358

    Google Scholar 

  • Yamagishi H, Sakurai A, Mori A (1998) Isolation of neurogenic and myogenic activities by joro spider toxin in the adult heart of the isopod crustaceanLigia exotica.Zool Sci Tokyo 15: 673–676

    CAS  Google Scholar 

  • Yazawa T, Kuwasawa K (1990) Cholinergic, catecholaminergic and GABAergic mechanisms of synaptic transmission in the heart of the hermit crab. In: Wiess K, Krenz W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 401–406

    Google Scholar 

  • Yazawa T, Kuwasawa K (1992) Intrinsic and extrinsic neural and neurohumoral control of the decapod heart. Experientia 48: 834–840

    CAS  Google Scholar 

  • Yazawa T, Tanaka K, Yasumatsu M, Otokawa M, Aihara Y, Ohsuga K, Kuwasawa K (1998) A pharmacological and HPLC analysis of the excitatory transmitter of the cardiac ganglion in the heart of the isopod crustaceanBathynomus doederleini.Can J Physiol Pharmacol 76: 599–604

    PubMed  CAS  Google Scholar 

  • Zhang B, Harris-Warrick RM (1995) Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. J Neurophysiol 74: 1929–1937

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cooke, I.M. (2002). Physiology of the Crustacean Cardiac Ganglion. In: Wiese, K. (eds) Crustacean Experimental Systems in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56092-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56092-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62860-3

  • Online ISBN: 978-3-642-56092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics