Skip to main content

Synapse Specification for Regenerated Motoneurons in Crayfish muscle

  • Conference paper
Crustacean Experimental Systems in Neurobiology

Abstract

Crustacean motoneurons fall into two broad classes of phasic and tonic, and within each class individual neurons show considerable differentiation of their synapses. Hence, regeneration of adult crustacean neuromuscular systems provides opportunities for assessing the role of the neuron and its target in specifying synapses. The crayfish abdominal superficial flexor muscle (SFM) is a particularly profitable preparation for examining the regeneration of tonic synapses. Here, a small population of tonic axons sprout from their cut proximal ends and reinnervate the linearly arranged glow muscle fibers, with differentiated synapses that resemble those formed by the original innervation. Manipulation of the nerve or of the target muscle revealed that some neurons regenerate synapses which are differentiated in a regional manner similar to the synapses of the intact axon, implying a retrograde signaling mechanism. Other regenerating neurons, however, deviate from their intact regional distribution, implying a cell autonomous mechanism for specification of synaptic properties. Selective operation of either presynaptic or postsynaptic influences may account for synapse specification of individual motoneurons. Conversely, regeneration and differentiation of phasic and tonic synapses appear to be intrinsically regulated, as demonstrated by allotransplanting a donor tonic or phasic nerve with its attendant ganglion onto a denervated host SFM. Compared to normal tonic synapses, regenerated phasic synapses show a greater initial release of transmitter, have thinner, mitochondria-sparse terminals, and exhibit synapses with more active zones. These properties are reminiscent of native phasic synapses. Thus, regeneration of phasic and tonic synapses appears to be regulated by the neuron itself, while synapse differentiation within each neuronal class appears to be regulated by the target muscle. Evidence for both regulatory mechanisms was found inDrosophilamotoneurons, which develop a fixed number of active zones in the absence of a target, suggesting an intrinsic mechanism, while their synaptic transmitter release is heavily modulated by a retrograde signaling mechanism. Such combinatorial effects in synapse specification may permit an optimal match between neuron and target.

Acknowledgements. I am indebted to Sam Velez for pioneering studies of crayfish neuromuscular regeneration, Kristin Krause for allotranplanting foreign nerves and Joanne Pearce, Rosalind Coulthard, and Rahim Hirji for defining the fine structure of regenerated synapses. Research support was provided by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcaro KF, Lnenicka GA (1995) Intrinsic differences in axonal growth from crayfish fast and slow motoneurons. Dev Biol 168: 272–283

    Article  PubMed  CAS  Google Scholar 

  • Atwood HL (1976) Organization and synaptic physiology of crustacean neuromuscular systems. Prog Neurobiol 7: 291–391

    Article  PubMed  CAS  Google Scholar 

  • Atwood HL, Bittner GD (1971) Matching of excitatory and inhibitory inputs to crustacean muscle fibers. J Neurophysiol 34: 157–170

    PubMed  CAS  Google Scholar 

  • Atwood HL, Cooper RL (1996) Synaptic diversity and differentiation: crustacean neuromuscular junctions. Invert Neurosci 1: 291–307

    Article  Google Scholar 

  • Atwood HL, Wojtowicz Mt (1986) Short-term and long-term plasticity and physiological differentiation of crustacean motor systems. Int Rev Neurobiol 28: 275–362

    Article  PubMed  CAS  Google Scholar 

  • Bittner GD (1968) Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J Gen Physiol 51: 731–758

    Article  PubMed  CAS  Google Scholar 

  • Cash S, Chiba A, Keshishian H (1992) Alternate neuromuscular target selection following the loss of single muscle fibers inDrosophila.J Neurosci 12: 2051–2064

    PubMed  CAS  Google Scholar 

  • Chiba A, Hing H, Cash S, Keshishian H (1993) The growth cone choices ofDrosophilaneurons in response to muscle fiber mismatch. J Neurosci 13: 714–732

    PubMed  CAS  Google Scholar 

  • Clement JF, Taylor AK, Velez SJ (1983) Effect of a limited target area on the regeneration of specific neuromuscular connections in a crayfish. J Neurophysiol 49: 216–226

    PubMed  CAS  Google Scholar 

  • Davis GW, Murphey RK (1993) A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation. J Neurosci 13: 3827–3838

    PubMed  CAS  Google Scholar 

  • Davis GW, Murphey RK (1994) Retrograde signalling and the development of transmitter release properties in the invertebrate nervous system. J Neurobiol 25: 740–756

    Article  PubMed  CAS  Google Scholar 

  • Davis GW, Schuster CM, Goodman CS (1997) Genetic analysis of the mechanism controlling target selection: target-derived fasciclin II regulates the pattern of synapse formation. Neuron 19: 561–573

    Article  PubMed  CAS  Google Scholar 

  • Davis GW, DiAntonio A, Petersen SA, Goodman CS (1998) Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release. Neuron 20: 5–15

    Google Scholar 

  • Ely P, Velez SJ (1982) Regeneration of specific neuromuscular connections in the crayfish. I. Patterns of connections and synaptic strength. J Neurophysiol 47: 656–665

    PubMed  CAS  Google Scholar 

  • Evoy WH, Kennedy D, Wilson DM (1967) Discharge patterns of neurons supplying tonic abdominal flexor muscles in the crayfish. J Exp Biol 46: 393–411

    PubMed  CAS  Google Scholar 

  • Frank E (1973) Matching of facilitation at the neuromuscular junction of the lobster: a possible case for the influence of muscle on nerve. J Physiol (Lond) 233: 635–658

    CAS  Google Scholar 

  • Goodman CS, Shatz C (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell/Neuron 10: 77–98

    Google Scholar 

  • Goransson LG, Hunt WP, Velez SJ (1988) Regeneration studies on a crayfish neuromuscular system. II. Effect of changing nerve entry point into the muscle field on the gradient of innervation. J Neurobiol 19: 141–152

    Article  PubMed  CAS  Google Scholar 

  • Govind CK, Atwood HL, Lang F (1973) Synaptic differentiation in a regenerating crab-limb muscle. Proc Natl Acad Sci USA 70: 822–826

    Article  PubMed  CAS  Google Scholar 

  • Hill AAV, Jin P (1998) Regulation of synaptic depression rates in the cricket cereal sensory system. J Neurophysiol 79: 1277–1285

    PubMed  CAS  Google Scholar 

  • Hunt WP, Velez SJ (1982) Regeneration of specific neuromuscular connections in the crayfish. II. Effects of changes in the target area. J Neurophysiol 42: 666–676

    Google Scholar 

  • Katz PS, Kirk MD, Govind CK (1993) Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release. J Neurosci 13: 3075–3089

    PubMed  CAS  Google Scholar 

  • Kennedy D, Bittner GD (1974) Ultrastructural correlates of motor nerve regeneration in crayfish. Cell Tissue Res 148: 97–110

    Article  PubMed  CAS  Google Scholar 

  • Kennedy D, Takeda K (1965a) Reflex control of abdominal flexor muscles in crayfish. I. The twitch system. J Exp Biol 43: 211–227

    Google Scholar 

  • Kennedy D, Takeda K (1965b) Reflex control of abdominal flexor muscles in crayfish. II. The tonic system. J Exp Biol 43: 229–246

    Article  Google Scholar 

  • King MJR, Atwood HL, Govind CK (1996) Structural features of crayfish phasic and tonic neuromuscular terminals. J Comp Neurol 372: 618–626

    Article  PubMed  CAS  Google Scholar 

  • Krause KM, Velez SJ (1995) Regeneration of neuromuscular connections in crayfish allotransplanted neurons. J Neurobiol 27: 154–171

    Article  PubMed  CAS  Google Scholar 

  • Krause KM, Pearce J, Velez SJ, Govind CK (1996) Structure of allotransplanted ganglia and regenerated neuromuscular connections in crayfish. J Neurobiol 30: 439–453

    Article  PubMed  CAS  Google Scholar 

  • Krause KM, Pearce J, Govind CK (1998) Regeneration of phasic motor axons on a crayfish tonic muscle: neurons specifies synapses. J Neurophysiol 80: 994–997

    PubMed  CAS  Google Scholar 

  • Lnenicka GA, Atwood HL, Marin L (1986) Morphological transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation. J Neurosci 6: 2252–2258

    PubMed  CAS  Google Scholar 

  • Lnenicka GA, Hope SJ, Combatti M, LePage S (1991) Activity-dependent development of synaptic varicosities at crayfish motor terminals. J Neurosci 11: 1040–1048

    PubMed  CAS  Google Scholar 

  • Msghina M, Atwood HL (1997) Distribution and morphology of inhibitory innervation in crayfish(Procambarus clarkii)limb and abdominal muscles. Cell Tissue Res 290: 111–118

    Article  Google Scholar 

  • Msghina M, Govind CK, Atwood HL (1998) Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons. J Neurosci 18: 1374–1382

    PubMed  CAS  Google Scholar 

  • Msghina M, Millar AG, Charlton MP, Govind CK, Atwood HL (1999) Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses. J Neurosci 19: 8419–8434

    PubMed  CAS  Google Scholar 

  • Nordlander RH, Singer M (1972) Electron microscopy of severed motor fibers in the crayfish. Z Zellforsch 126: 157–181

    Article  PubMed  CAS  Google Scholar 

  • Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A (1997) Genetic analysis of glutamate receptors inDrosophilareveals a retrograde signal regulating presynaptic transmitter release. Neuron 19: 1237–1248

    Article  PubMed  CAS  Google Scholar 

  • Prokop A (1999) Integrating bits and pieces: synapse structure and formation inDrosophilaembryos. Cell Tissue Res 297: 169–186

    Article  PubMed  CAS  Google Scholar 

  • Prokop A, Landgraf M, Rushton E, Broadie K, Bate M (1996) Presynaptic development at theDrosophilaneuromuscular junction; assembly and localization of the presynaptic active zones. Neuron 17: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Schuster CM, Davis GW, Fetter RD, Goodman CS (1996a) Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilisation and growth. Neuron 17: 641–654

    Article  PubMed  CAS  Google Scholar 

  • Schuster CM, Davis GW, Fetter RD, Goodman CS (1996b) Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17: 655–667

    Article  PubMed  CAS  Google Scholar 

  • Selverston AI, Remler MP (1972) Neural geometry and activation of crayfish fast flexor motoneurons. J Neurophysiol 35: 797–814

    PubMed  CAS  Google Scholar 

  • Skinner K (1985) The structure of the fourth abdominal ganglion of the crayfishProcambarus clarkii(Girard). II. Synaptic neuropils. J Comp Neurol 234: 182–191

    Article  PubMed  CAS  Google Scholar 

  • Stewart BA, Atwood HL (1992) Synaptic plasticity in a regenerated crayfish phasic motoneuron. J Neurobiol 23: 881–889

    Article  PubMed  CAS  Google Scholar 

  • Velez SJ, Wyman RJ (1978a) Synaptic connectivity in a crayfish neuromuscular system. I. Gradient of innervation and synaptic strength. J Neurophysiol 41: 75–84

    PubMed  CAS  Google Scholar 

  • Velez SJ, Wyman RJ (1978b) Synaptic connectivity in a crayfish neuromuscular system. II. Nerve muscle matching and nerve branching patterns. J Neurophysiol 41: 85–96

    PubMed  CAS  Google Scholar 

  • Wine JJ, Mittenthal JE, Kennedy D (1974) The structure of the tonic flexor motoneurons in the crayfish abdominal ganglia. J Comp Physiol 93: 315–335

    Article  Google Scholar 

  • Worden MK, Hwang J-C., Velez SJ (1988) Regeneration studies on a crayfish neuromuscular system. I. Connectivity changes after intersegmental nerve transplants. J Neurobiol 19: 127–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Govind, C.K. (2002). Synapse Specification for Regenerated Motoneurons in Crayfish muscle. In: Wiese, K. (eds) Crustacean Experimental Systems in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56092-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56092-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62860-3

  • Online ISBN: 978-3-642-56092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics